APPROXIMATION TO MULTIVARIATE FUNCTIONS IN

THE EXTENDED FUNCTIONAL TENSOR TRAIN FORMAT Christoph Strössner, Bonan Sun and Daniel Kressner

École Polytechnique Fédérale de Lausanne (EPFL), Institute of Mathematics, Switzerland. Contact: bonan.sun@epfl.ch

Functional tensor train (FTT) approximation

A continuous version of TT format for $f: [-1, 1]^d \to \mathbb{R}$, i.e., FTT format:

$$f(x_1, \dots, x_d) \approx \sum_{\alpha_1=1}^{R_1} \dots, \sum_{\alpha_{d-1}=1}^{R_{d-1}} g_{1,\alpha_1}^{(1)}(x_1) g_{\alpha_1,\alpha_2}^{(2)}(x_2) \cdots g_{\alpha_{d-2},\alpha_{d-1}}^{(d-1)}(x_{d-1}) g_{\alpha_{d-1},1}^{(d)}(x_d).$$
(1)

Goal: Approximate f in FTT format (1) using as few function evaluations as possible.

FTT via tensorized Chebyshev interpolation + **TT**

Novel EFTT approximation algorithm — Phase 2 & 3

- **Phase 2:** Construct \mathcal{C} implicitly, i.e., define a procedure to compute any entry of \mathcal{C} . • Best possible \mathcal{C} given $U^{(\ell)}$ is by orthogonally projecting \mathcal{T} onto the span of $U^{(\ell)}$'s, i.e. multiplying \mathcal{T} with $Q^{(\ell)}(Q^{(\ell)})^{\top}$ in each mode, where $Q^{(\ell)}$ is the thin QR of $U^{(\ell)}$. • Main issue: requires full evaluation of \mathcal{T} , which is not feasible. • Our solution: use oblique projection $Q^{(\ell)}(\Phi_{I_{\ell}}^{\top}Q^{(\ell)})^{-1}\Phi_{I_{\ell}}^{\top}$ for some sampling matrix $\Phi_{I_{\ell}}$, i.e., $\Phi_{I_{\ell}}^{\top}Q^{(\ell)} = Q^{(\ell)}(I_{\ell}, :).$ $\mathcal{T} \approx (\underbrace{\mathcal{T} \times_1 \Phi_{I_1}^\top \times_2 \cdots \times_d \Phi_{I_d}^\top}_{\mathcal{C} = \mathcal{T}(I_1, \cdots, I_d)}) \times_1 \underbrace{Q^{(1)}(\Phi_{I_1}^\top Q^{(1)})^{-1}}_{\text{updated } U^{(1)}} \times_2 \cdots \times_d \underbrace{Q^{(d)}(\Phi_{I_d}^\top Q^{(d)})^{-1}}_{\text{updated } U^{(d)}}$

Define the function evaluation tensor $\mathcal{T} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ on the tensorized Chebyshev nodes: $\mathcal{T}_{i_1,\dots,i_d} = f(x_{i_1}^{(1)},\dots,x_{i_d}^{(d)}), \ x_k^{(\ell)} = \cos(\pi k/(n_\ell - 1)), \ k = 1,\dots,n_\ell, \ \ell = 1,\dots,d.$ Then the Chebyshev interpolant \tilde{f} of f is given by

$$f(x_1, \dots, x_d) \approx \tilde{f}(x_1, \dots, x_d) = \sum_{i_1=1}^{n_1} \cdots \sum_{i_d=1}^{n_d} \mathcal{A}_{i_1, \dots, i_d} T_{i_1}(x_1) \cdots T_{i_d}(x_d)$$

where $T_k(x)$ is the k-th Chebyshev polynomial and the coefficient tensor \mathcal{A} is given by $\mathcal{A} = \mathcal{T} \times_1 F^{(1)} \times_2 F^{(2)} \times_3 \cdots \times_d F^{(d)} \text{ for some DCT matrices } F^{(\ell)} \in \mathbb{R}^{n_\ell \times n_\ell}.$

Observation: $\mathcal{T} \approx \hat{\mathcal{T}}$ in TT format leads to $\hat{f} \approx \hat{f}$ in FTT format:

$$\hat{\mathcal{T}}_{i_1,\dots,i_d} = \sum_{\alpha_1=1}^{R_1} \cdots \sum_{\alpha_{d-1}=1}^{R_{d-1}} \mathcal{G}_{1,i_1,\alpha_1}^{(1)} \mathcal{G}_{\alpha_1,i_1,\alpha_2}^{(2)} \cdots \mathcal{G}_{\alpha_{d-2},i_{d-1},\alpha_{d-1}}^{(d-1)} \mathcal{G}_{\alpha_{d-1},i_d,1}^{(d)}, \qquad (2)$$
$$\implies \hat{f} \text{ in FTT format (1) with } g_{\alpha_{\ell-1},\alpha_{\ell}}^{(\ell)}(x) = \sum_{j=1}^{n_{\ell}} \sum_{k=1}^{n_{\ell}} F_{j,k}^{(\ell)} \mathcal{G}_{\alpha_{\ell-1},k,\alpha_{\ell}}^{(\ell)} T_j(x).$$

Updated Goal: Approximate \mathcal{T} in TT format (2) by accessing as few entries as possible.

• Error introduced by the oblique projection depends on $\|Q^{(\ell)}(I_{\ell},:)^{-1}\|_2$, which can be minimized by selecting I_{ℓ} carefully, e.g., using model order reduction methods like DEIM. • No evaluation of \mathcal{T} in Phase 2, just update $U^{(\ell)}$ and define \mathcal{C} as a subtensor of \mathcal{T} implicitly.

Phase 3: Construct the TT format of \mathcal{C} by accessing as few entries of \mathcal{C} as possible. • We use the greedy2cross algorithm [2], requires $\mathcal{O}(drR^2)$ function evaluations. • It is adaptive in TT rank R_{ℓ} .

Numerical results

Oscillatory

Comparison of EFTT with directly applying greedy2cross to \mathcal{T} for Genz functions:

Oscillatory

Extended (functional) tensor train format (EFTT)

Novel idea: Approximate \mathcal{T} in Tucker format first $\mathcal{T} \approx \mathcal{C} \times_1 U^{(1)} \times_2 \cdots \times_d U^{(d)}$ and then approximate the Tucker core $\mathcal{C} \in \mathbb{R}^{r_1 \times \cdots \times r_d}$ in TT format with TT cores $\mathcal{H}^{(\ell)} \in \mathbb{R}^{R_{\ell-1} \times r_\ell \times R_\ell}$. In this case, \mathcal{T} is approximated in the extended TT format:

$$\mathcal{T}_{i_1,\dots,i_d} \approx \hat{\mathcal{T}}_{i_1,\dots,i_d} = \sum_{j_1=1}^{r_1} \cdots \sum_{j_d=1}^{r_d} \sum_{\alpha_1=1}^{R_1} \cdots \sum_{\alpha_{d-1}}^{R_{d-1}} \mathcal{H}^{(1)}_{1,j_1,\alpha_1} \cdots \mathcal{H}^{(d)}_{\alpha_{d-1},j_d,1} U^{(1)}_{i_1,j_1} \cdots U^{(d)}_{i_d,j_d}.$$
 (3)

Reduce space complexity $\mathcal{O}(dnR^2)$ of TT to $\mathcal{O}(drR^2 + dnr)$ especially when $r \ll n$.

Updated Goal: Approximate \mathcal{T} in ETT format (3) by accessing as few entries as possible.

Novel EFTT approximation algorithm — Phase 1

Phase 1: Construct $U^{(\ell)} \in \mathbb{R}^{n_{\ell} \times r_{\ell}}$ by accessing as few entries of \mathcal{T} as possible.

- $U^{(\ell)}$ should approximate the space spanned by the mode- ℓ fibers of \mathcal{T} .
- We propose the randomized pivoted adaptive cross approximation (RPACA) algorithm:

 $M \approx M(:, J)M(I, J)^{-1}M(I, :)$ for matrix M and index sets I, J.

• Applying RPACA to the mode- ℓ matricization $\mathcal{T}^{\{\ell\}} \in \mathbb{R}^{n_{\ell} \times n_1 \cdots n_{\ell-1} n_{\ell+1} \cdots n_d}$ of \mathcal{T} yields $\mathcal{T}^{\{\ell\}} \approx \mathcal{T}^{\{\ell\}}(:, J_{\ell}) (\mathcal{T}^{\{\ell\}}(I_{\ell}, J_{\ell}))^{-1} \mathcal{T}^{\{\ell\}}(I_{\ell}, :), \text{ let } U^{(\ell)} \text{ be } \mathcal{T}^{\{\ell\}}(:, J_{\ell}).$

Comparison of EFTT with continuous analog of TT-cross proposed in [3] (c3py) for functions tested in [3] with various application backgrounds:

Advantages: 1. Only requires evaluating $\mathcal{O}(dr^3 + dsr^2 + dnr)$ entries of \mathcal{T} . 2. Adaptivity in Tucker rank r_{ℓ} 's naturally (by choosing ACA tol ε). 3. Adaptivity in polynomial degree n_{ℓ} 's by leveraging Chebfun heuristics [1].

References

[1] J. L. Aurentz and L. N. Trefethen, Chopping a Chebyshev series, ACM Trans. Math. Software, 43 (2017), pp. 1–21. [2] D. V. Savostyanov, Quasioptimality of maximum-volume cross interpolation of tensors, Linear Algebra Appl., 458 (2014), pp. 217–244. [3] A. Gorodetsky, Continuous low-rank tensor decompositions, PhD thesis, MIT, Cambridge, MA, 2017.

	Function (dimension)	Algorithm	Error	# function evals	# dofs (storage)	$\max_{\ell} n_{\ell}$	$\max_{\ell} R_{\ell}$	$\max_{\ell} r_{\ell}$
	Piston (7)	EFTT	3.71e-09	174188	69019	33	23	11
		c3py	3.85e-05	251760	66080	35	24	
	Borehole (8)	EFTT	3.95e-02	6552	1116	32	2	4
		c3py	2.08e-03	14346	577	70	2	
	OTL Circuit (6)	EFTT	7.93e-11	6670	1083	27	5	5
		c3py	4.07e-08	15674	1782	28	5	
	Robot Arm (8)	EFTT	8.12e-02	499954	54760	94	12	27
		c3py	3.85e-01	2018017	228439	105	20	
	Wing Weight (10)	EFTT	2.83e-14	2867	560	24	2	2
		c3py	2.15e-13	12224	554	19	2	
	Friedman (5)	EFTT	2.16e-11	5238	404	19	3	4
		c3py	8.08e-05	12142	710	15	4	
	G & L (6)	EFTT	4.95e-06	1547	356	29	2	2
		c3py	3.51e-02	13928	374	105	2	
	G & P 8D (8)	EFTT	4.77e-11	19527	3902	24	6	7
		c3py	9.54e-10	27336	5136	21	7	
	D & P Exp (3)	EFTT	1.13e-14	2404	646	105	2	2
		c3py	4.78e-10	12162	336	49	2	