

Efficient Krylov methods for linear response in plane-wave electronic structure calculations Michael F. Herbst¹, Bonan Sun^{1,2}

¹Mathematics for Materials Modelling, Institute of Mathematics & Institute of Materials, EPFL, 1015 Lausanne, Switzerland [\(michael.herbst@epfl.ch,](mailto:michael.herbst@epfl.ch) [bonan.sun@epfl.ch\)](mailto:bonan.sun@epfl.ch) ²Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany [\(bsun@mpi-magdeburg.mpg.de\)](mailto:bsun@mpi-magdeburg.mpg.de)

Density Functional Perturbation Theory (DFPT)

Kohn-Sham density functional theory (KS-DFT)

• KS-DFT: most widely used electronic structure calculation method for materials simulations.

 \mathcal{E} := $I_{N_a} - \chi_0 \mathcal{K}$: adjoint of the dielectric operator. Each M-v product $\mathcal{E} \delta \rho$ requires solving N_{occ} discretized **Sternheimer equations** [\(3\)](#page-0-1):

F: external potential *V*ext(*r*) ground state electron density ρ(*r*) KS-DFT solve a non-linear eigenvalue problem

> L some multilinear map, *H*=− 1 ²∆+*V*ext+*V*Hxc, *H*b=*PHP* for some projector *P*, (ϵ*n*,ψ*n*) eigenpairs of *H* Orbitals, Hamiltonians are represented in \mathcal{X}^{\bigcirc} :=span $\{e_{\bm{G}}|\bm{G}\in\mathbb{L}^*,\ \|\bm{G}\|_2$ ≤ √ 2*E*cut}, *E*cut cutoff energy Densities, potentials are represented in $X := \{(i_1 \mathbf{a}_1 + i_2 \mathbf{a}_2 + i_3 \mathbf{a}_3)/\sqrt[3]{N_g} | 0 \le i_1, i_2, i_3 < \sqrt[3]{N_g} \}$. For technical reasons: $N_g \approx 16N_b$, N_g :=dim X , N_b :=dim \mathcal{X}^{\bigcirc} . $\sf{Transform\ from\ real\ X\ to\ Fourier\ } {\cal X}^{\bigcirc}$ spaces $\bm{\mathit{F}}\in\mathbb{C}^{N_{\sf b}\times N_{\sf g}}$ & vice versa $\bm{\mathit{F}}^{-1}\!\!\in\!\mathbb{C}^{N_{\sf g}\times N_{\sf b}}$ using <code>FFTs.</code>

 ϕ_n , $\delta\phi_n$, P , \hat{H} \longrightarrow **C** \longrightarrow **O** ϕ_n , $\delta\phi_n \in \mathbb{C}^{N_b}$, P , $\hat{H} \in \mathbb{C}^{N_b}$ $discretize in \mathcal{X}^{\bigcirc}$ \rightarrow ϕ_n $\delta \phi_n \in \mathbb{C}^{N_b}$ P $\hat{H} \in \mathbb{C}^{N_b \times N_b}$ $\delta\rho,~\delta{\bm V},~\chi_{\bm 0},~{\bm K},~{\cal E}~~\quad \quad \quad \quad \quad \quad \text{SDE}~~\text{SDE}~~\text{SDE}~~\delta\rho,~\delta{\bm V}\in\mathbb{R}^{N_{\text{g}}},~\chi_{\bm 0},~{\bm K},~{\cal E}\in\mathbb{R}^{N_{\text{g}}}$ $discretize in \mathbb{X}$ $\delta \rho$ $\delta V \in \mathbb{R}^{N_g}$ γ_0 **K** $\mathcal{E} \in \mathbb{R}^{N_g \times N_g}$

DFT properties are derivatives: DFPT

• Properties of interest: response of system to external changes, i.e., derivatives of ρ w.r.t. V_{ext} :

• In plane-wave basis, Eq. [\(1\)](#page-0-0) leads to the discretized **Dyson equation**:

 $\mathsf{Seek}\ \delta\rho\in\mathbb{R}^{\mathcal{N}_{g}}$ such that $(I_{\mathcal{N}_{g}}-\chi_{0}\boldsymbol{K})\delta\rho=\delta\rho_{0},\ I_{\mathcal{N}_{g}},\ \chi_{0},\ \boldsymbol{K}\in\mathbb{R}^{\mathcal{N}_{g}\times\mathcal{N}_{g}}$. (2)

- The Dyson equation [\(2\)](#page-0-2), real non-symmetric, is solved by GMRES with tol τ .
- At *i*-th GMRES iter, $N_{\rm occ}$ Sternheimer's [\(3\)](#page-0-1), complex Hermitian, are solved by CG with tol $\tau^{\rm CG}_{i,n}$ *i*,*n* .
- Dyson + Sternheimer's: **nested iteratively** solved linear systems.
- **Difficulty**: How to choose τ_{in}^{CG} *i*,*n* ?
- **Ideal** τ_{in}^{CG} *i*,*n* 's: (a) **accuracy** τ of Dyson is **guaranteed** with (b) **minimal computational cost** dominated by # Hamiltonian applications $N = \sum_{i,n} N_{i,n}^{\text{CG}}$ *i*,*n* ?

$$
\mathcal{E}\delta\rho = \mathcal{L}(\delta\phi_1, \cdots, \delta\phi_{N_{\text{occ}}}), \text{ where } \delta\phi_n \text{ solves (3)}
$$

$$
(\hat{H} - \epsilon_n P)\delta\phi_n = -PF((K\delta\rho) \odot (F^{-1}\phi_n)), n = 1, \cdots, N_{\text{occ}},
$$

$$
\hat{H}, P \in \mathbb{C}^{N_{\text{b}} \times N_{\text{b}}}, \delta\phi_n \in \mathbb{C}^{N_{\text{b}}}, N_{\text{g}} \approx 16N_{\text{b}}.
$$
 (3)

Comments on the Dyson equation:

Corollary: If the CG tolerances $\tau_{i,n}^{\text{CG}}$ $\mathcal{L}_{i,n}^{\text{CG}}$ verify [\(4\)](#page-0-3) and the convergence of GMRES is at least linear, then the true residual decreases at least superlinerly w.r.t. the total number of Hamiltonian applications:

Efficient Krylov subspace methods for Dyson equation

Algorithm: Standard generalized minimal residual method (GMRES)

 $\textbf{Required: } \mathcal{E} \in \mathbb{R}^{N_{\text{g}} \times N_{\text{g}}}, \, \bm{b} \in \mathbb{R}^{N_{\text{g}}}$ as in [\(2\)](#page-0-2), initial guess $\bm{x}_0 \in \mathbb{R}^{N_{\text{g}}} ,$ $\textrm{tol}~\tau >0,$ restart period $m \in \mathbb{N}$ **Ensure:** $x \in \mathbb{R}^{N_g}$ s.t. $||r_m||_2 \leq \tau$ where $r_m := b - \mathcal{E}x_m \in \mathbb{R}^{N_g}$ is the true residual 1: $r_0 = b - \mathcal{E}x_0$, $\beta = ||r_0||$, $v_1 = r_0/\beta$, $v_1 = v_1$, $H_0 = []$

- 2: **for** $k = 1, 2, \cdots, m$ **do**
- 3: Compute $w = \mathcal{E}v_k$ by solving N_{occ} Sternheimer's [\(3\)](#page-0-1)
- 4: build orthonormal basis *Vk*+1 ∈ R *^N*g×(*k*+1) & Hessenberg matrix *H^k* ∈ R (*k*+1)×*^k* by Arnoldi
- 5: Compute the estimated residual $\widetilde{r}_k := \beta e_1 H_k y_k$ where $y_k = \arg \min_{y \in \mathbb{C}^k} ||\beta e_1 H_k y||_2$
- $\|\widetilde{\boldsymbol{r}}_k\| \leq \tau$ then return $\boldsymbol{x} = \boldsymbol{x}_0 + \boldsymbol{V}_k \boldsymbol{y}_k$ end if
- 7: **end for**
- 8: **if** $\|\widetilde{\mathbf{r}}_m\| > \tau$ then restart: update $\mathbf{x}_0 = \mathbf{x}_0 + \mathbf{V}_m \mathbf{y}_m$ and go to Line [1](#page-0-3) end if
- Consequence of Arnoldi relation $\mathcal{E} V_m = V_{m+1} H_m: ||r_m||_2 = ||\widetilde{r}_m||$ \Vert ₂. Hence $\Vert \widetilde{r}_m \Vert$ $\left\| \cdot \right\|_2 \leq \tau \Rightarrow \left\| \boldsymbol{r}_m \right\|_2 \leq \tau.$

• Dyson equation is preconditioned \Rightarrow $\|\mathbf{A}\mathbf{v}_i\| = \mathcal{O}(1) \Rightarrow$ it may be dropped.
• Fourier decay of $\phi_n \Rightarrow \|\boldsymbol{F}^{-1}\Phi\|_{2,\infty}$ is small \Rightarrow it may be replaced by its lower bound $\sqrt{N_{\text{occ}}}/\sqrt{|\Omega|}$. \implies We propose 3 **adaptive strategies** to choose τ_{in}^{CG} *i*,*n* in practice, as specified in the next part.

Pgrt $2f_n\left\Vert \boldsymbol{K}\boldsymbol{v}_i\right\Vert \left\Vert \mathsf{Re}(\boldsymbol{F}^{-1}\boldsymbol{\Phi})\right\Vert _{2,\infty}\mathcal{N}_\mathrm{g}^{1/2}\mathcal{N}_{\mathrm{occ}}^{1/2}$ occ · 3*m* [∥]e*ri*−1[∥] τ

3 naive strategies: PD10, PD100, PD10_n where $\tau^{\text{CG}}_{i,n}$ $\tau_{i,n}^{\text{CG}} = \tau/10, \, \tau/100, \, \tau/(10 \, \|\delta \rho_0\|_2), \, \forall i, n$, respectively. **Numerical results**

An Inexact GMRES method

• Observation — $\mathcal{E}v_k$ in Line [3](#page-0-3) is inexact: the Sternheimer's are solved by CG with tol $\tau_{i,n}^{\text{CG}} > 0$. • Consequence of inexactness: inexact Arnoldi relation: $\sqrt{ }$ \mathcal{E} (1) v_1, \mathcal{E} (2) v_2, \cdots, \mathcal{E} (*m*) *v^m* $\overline{}$ $=$ $V_{m+1}H_m$ \implies $||\mathbf{r}_m||_2 \neq ||\widetilde{\mathbf{r}}_m||$ \Vert_{2} , therefore, the stopping criterion $\Vert \widetilde{r}_{m} \Vert$ $\left\| \cdot \right\|_2 \leq \tau \implies \left\| \boldsymbol{r}_m \right\|_2 \leq \tau.$ \implies the stopping criterion $\|\widetilde{\mathbf{r}}_m\|$ $\Vert_{2} \leq \tau$ needs to be modified carefully.

Theorem: $\forall \tau > 0$, the accuracy of the Dyson equation $||r_m||_2 \leq \tau$ is guaranteed if (a) $\left\| \widetilde{\textbf{r}}_{m}\right\|$ $\|2 \leq \tau/3$ and (b) for all $i = 1, \dots, m$

> **Table 1:** Returned true residual norm ∥*r*end∥, total number of Hamiltonian applications *N* CG for different strategies. Our adaptive strategies are highlighted in blue, and the top three strategies for each metric are highlighted in red.

$$
\tau_{i,n}^{\text{CG}} \leq \frac{|\Omega|^{1/2}(\epsilon_{N_{\text{occ}}+1}-\epsilon_n)}{2f_n \|\boldsymbol{K}\boldsymbol{v}_i\| \|\text{Re}(\boldsymbol{F}^{-1}\boldsymbol{\Phi})\|_{2,\infty} N_g^{1/2} N_{\text{occ}}^{1/2}} \frac{\sigma_m(\boldsymbol{H}_m)}{3m} \frac{1}{\|\widetilde{\boldsymbol{r}}_{i-1}\|}\tag{4}
$$

Figure 1: True residual norms $||r_j||$ (in solid lines) and estimated residual norms $||\tilde{r}_j||$ (in dashed lines) v.s. (A) GMRES iteration number *i* and (B) total number of Hamiltonian applications for the Dyson equation of the Al₄₀ supercell system. Target tolerance τ = 10⁻⁹, GMRES is restarted every m = 20 iterations and Kerker preconditioning is applied.

$$
\|\bm{r}_i\| \lesssim C_1^{\sqrt{C_2 - N_{\leq i}^{\text{CG}}} + C_3} \|\bm{r}_0\|.
$$
 (5)

Main features of our result:

- **Guaranteed** accuracy of the Dyson equation with **computable** CG tol.
- Looser CG tol closer to convergence (as $\|\widetilde{r}_{i-1}\| \to 0$, note $\|\widetilde{r}_{i-1}\| \searrow$).
- **Adaptive** CG tol w.r.t. the properties of Sternheimer's (eigengap $\epsilon_{N_{\text{occ}}+1} \epsilon_n$, occupation number f_n).
- Easy implementation in WDFTK <https://dftk.org>
- **First rigorous error analysis** for the numerical solution of plane-wave Dyson equation.
- Methodology **easy to extend** to perturbation theories of other related mean-field models.

Aggressive modifications of [\(4\)](#page-0-3) **for practical implementations:**

• Using Schur trick [2] for Sternheimer's \Rightarrow lower eigenvalue $\geq \mathcal{O}(1) \Rightarrow \epsilon_{N_{\text{occ}}+1} - \epsilon_n$ may be dropped • Dyson equation is preconditioned \Rightarrow $\|\mathbf{K} \mathbf{v}_i\| = \mathcal{O}(1) \Rightarrow$ it may be dropped.

Numerical simulations

Testing strategies

Heuristics to modify [\(4\)](#page-0-3) for practical usage from last part suggests 3 adaptive strategies as below:

 $\delta \rho = \mathcal{F}'$ $\cdot \delta V_0$. (1)

$$
Al_{40} \text{ Supercell: } N_g = 911\,250, N_b \approx 54\,200
$$

Figure 2: Average number of CG iterations (in solid lines) and geometric average of CG tolerances (in dashed lines) per GMRES iteration for the Dyson equation.

Conclusion

• Reliability: **guaranteed accuracy** of the Dyson equation with **computable** CG tolerances. • Efficiency: **superlinear convergence** w.r.t. # Hamiltonian applications. • We achieve **more accurate** results with **fewer** Hamiltonian applications! ∼ 1.5× speedup.

References

[1] M. F. Herbst, B. Sun, *Efficient Krylov methods for linear response in plane-wave electronic structure calculations*, available on *arXiv* soon.

[2] E. Cancès, M. F. Herbst, G. Kemlin, A. Levitt, B. Stamm. Numerical stability and efficiency of response property calculations in density functional theory. *Lett. Math. Phys.*, 113(1), 21.