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Density Functional Perturbation Theory (DFPT) Numerical simulations

Kohn-Sham density functional theory (KS-DFT) Testing strategies

Heuristics to modify (4) for practical usage from last part suggests 3 adaptive strategies as below:

e KS-DFT: most widely used electronic structure calculation method for materials simulations.

Adaptive strategies TG
solve aKnSo_r?- II:irTear > ground state electron density p(r) P J in

F: external potential Vex(r)

eigenvalue problem Pagr 1 Om(Hm) 1 -
9 A 3m 7, 1
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e Properties of interest: response of system to external changes, i.e., derivatives of p w.r.t. Vey: bort Q|1/2 om(Hm) 1
gr . L
5p=F - Vo, (1) 21 | KVil| |[Re(F—1®) |, Ng"*Node ~ 3m [Iri4
e In plane-wave basis, Eq. () leads to the discretized Dyson equation: 3 naive strategies: PD10, PD100, PD10_n where 7,7 = 7/10, 7/100, 7/(10 |6 poll,), Vi, n, respectively.

Numerical results
Seek dp € R such that (Iy, — xoK)dp = dpo, In,, X0, K € RN*MNa. ()

Also Supercell: Ny =911250, Ny, =~ 54200

€ = Iy, — xoK: adjoint of the dielectric operator. Each M-v product £5p requires solving Nocc
discretized Sternheimer equations (3):

Edp=L(0¢1,---,ddn,,), Where d¢, solves (3] 2 (A) ===
(H o enP)5¢n —_ _PF ((K(Sp) @ (F_1¢n)) ; n — 1 s, NOCC! (3) R~
H, P c CMN™ §p, c C, Ny~ 16N,

L some multilinear map, H=—%A+ Vext+ Vhxe, H=PHP for some projector P, (en,yn) eigenpairs of H
Orbitals, Hamiltonians are represented in XO:=span{eg|G<L*, ||Gl|l2<v2Ecyt}, Ecut cutoff energy
Densities, potentials are represented in Xi={ (i@ +haz+isas)/ 3/ NolO< i1, lo,iz< 3 /Ny }-

For technical reasons: Nga=16N,, Ngi=dimX, Ny:=dim X©.

Transform from real X to Fourier X© spaces FeCM*Mg & vice versa F~1eCNo*M using FFTs.

N 0 -
Ony On, P, H discretize in X b S Co. P, H € CoxM
6p, 6V, xo, K, &€ discretize in X 5p. SV € RM, xo. K, £ € RMxNo

Comments on the Dyson equation:

e The Dyson equation (2), real non-symmetric, is solved by GMRES with tol 7.

o At i-th GMRES iter, Nycc Sternheimer’s (3), complex Hermitian, are solved by CG with tol 7-C.

e Dyson + Sternheimer’s: nested iteratively solved linear systems. |

e Difficulty: How to choose 7737

e Ideal 7’s: (a) accuracy 7 of Dyson is guaranteed with (b) minimal computational cost

dominated by # Hamiltonian applications N =, , N3?

I

true residual ||r;|| (solid) or estimated residual ||7;|| (dashed)

Efficient Krylov subspace methods for Dyson equation

Algorithm: Standard generalized minimal residual method (GMRES)

_ Y VP " _ 5.00x10" 1.00x10° 1.50x10 2.00x10° 2.50x10°
Require: £ € R"* ™, b c R™ asin (2), initial guess xo € R™, tol 7 > 0, restart period m € N total Hamiltonian applications (# CG iterations)
Ensure: x € RN s.t. ||ry|, < 7 where ry, := b — Ex;, € RN is the true residual
1: p=b—EXp, 0 = HrOH, Vi = ro/ﬁ, Vi=vy, Hy = [] Figure 1: True residual norms ||r;|| (in solid lines) and estimated residual norms ||Fj|| (in dashed lines) v.s. (A) GMRES

iteration number i and (B) total number of Hamiltonian applications for the Dyson equation of the Alsg supercell system.

2. fork=1,2,--- ., m . e .
0 N ,m do Target tolerance 7 = 10~°, GMRES is restarted every m = 20 iterations and Kerker preconditioning is applied.

3: Compute w = Ev, by solving Ny Sternheimer’s
4: build orthonormal basis Vj,1 € RNox(x+1) & Hessenberg matrix H, € R +1)*% by Arnoldi

5. Compute the estimated residual 7, := ey — Hyyx where yi = argminyc« || 3€1 — Hky ||, 30 1072 .
6: if ||ry|| < 7 then return x = xy + Vi y« end if =) 4 3
7: end for g 23 10 &
8: if ||| > 7 then restart: update xo = Xo + V¥, and go to Line [1|end if Téf 1070 g
e Consequence of Arnoldi relation £V, = Vipu1Hy: |1l = |[Fml|,. Hence ||Fn||, < 7= ||Fmll, < 7 % 20 ¢ 8 S
3 S
An Inexact GMRES method =15 | 0z
e Observation — Evy in Line 3|is inexact: the Sternheimer’s are solved by CG with tol 75 > 0. = 102
e Consequence of inexactness: inexact Arnoldi relation: [5(1)v1,§(2)v2, - ,E(m)vm} = V.. 1H, tﬁlo i 10_12;-}
= |||, # ||Fm||,» therefore, the stopping criterion |[F||, < 7 =& [[Fml, < 7. S 5 1014 =
=> the stopping criterion ||ry||, < T needs to be modified carefully. = = 16&
| | | - 10
Theorem: V7 > 0, the accuracy of the Dyson equation ||ry|, < 7 is 5 GM%{OES o 1bs | 20
guaranteed if (a) HrmHg < 7_/3 and (b) foralli=1,---,m 1teration numbper ¢
Figure 2.: Avgrage number of CG itgrations (in solid lines) and geometric average of CG tolerances (in dashed lines) per
TCG _ 0 1/2(€Nocc+1 o En) Um(Hm) 1 ,7_ (4) GMRES iteration for the Dyson equation.
2f, ||Kvj|| ||Re(F~ D), Ng/ NOC/C 3m |[ri4]| Strategy ~ Pagr Phdmd Pert PD10 PD100 PD10_n

|feng| 1.74-108  7.17-10°10 2.41.10-1° 1.33.10°5 1.33.10¢ 5.32.10°°

Corollary: If the CG tolerances 7/ verify (4) and the convergence of GMRES is at least linear, then NCG 168k 196 k 228k 194 k 219k 275k
the true residual decreases at least superlinerly w.r.t. the total number of Hamiltonian applications:

Table 1: Returned true residual norm ||feng||, total number of Hamiltonian applications NCC for different strategies. Our

H "iH < C1\/ Co—NZP +Cs” foH- (5) adaptive strategies are highlighted in blue, and the top three strategies for each metric are highlighted in red.
Main features of our result: Conclusion
e Guaranteed accuracy of the Dyson equation with computable CG tol. e Reliability: guaranteed accuracy of the Dyson equation with computable CG tolerances.
e Looser CG tol closer to convergence (as ||r;_1|| — 0, note ||F;_1]| ). e Efficiency: superlinear convergence w.r.t. # Hamiltonian applications.
e Adaptive CG tol w.r.t. the properties of Sternheimer’s (eigengap e,,,.1 — e, occupation number f,). e We achieve more accurate results with fewer Hamiltonian applications! ~ 1.5x speedup.

e Easy implementation in ¢¢pF1k https://dftk.org
e First rigorous error analysis for the numerical solution of plane-wave Dyson equation.

e Methodology easy to extend to perturbation theories of other related mean-field models. References

Aggressive modifications of (4) for practical implementations:

e Using Schur trick [2] for Sternheimer’'s = lower eigenvalue 2 O(1) = en,..+1 — €n May be dropped
e Dyson equation is preconditioned = |Kv;|| = O(1) = it may be dropped.

e Fourier decay of ¢, = ||F~'®||2,», is small = it may be replaced by its lower bound v/Nocc/+/|Q].
=> We propose 3 adaptive strategies to choose 7, in practice, as specified in the next part.
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