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Density Functional Perturbation Theory (DFPT)

Kohn-Sham density functional theory (KS-DFT)
• KS-DFT: most widely used electronic structure calculation method for materials simulations.

F : external potential Vext(r ) ground state electron density ρ(r )KS-DFT
solve a non-linear
eigenvalue problem

DFT properties are derivatives: DFPT
• Properties of interest: response of system to external changes, i.e., derivatives of ρ w.r.t. Vext:

δρ = F ′ · δV0. (1)

• In plane-wave basis, Eq. (1) leads to the discretized Dyson equation:

Seek δρ ∈ RNg such that (INg − χ0K )δρ = δρ0, INg, χ0, K ∈ RNg×Ng. (2)

E := INg − χ0K : adjoint of the dielectric operator. Each M-v product Eδρ requires solving Nocc
discretized Sternheimer equations (3):

Eδρ = L(δϕ1, · · · , δϕNocc), where δϕn solves (3)
(Ĥ − ϵnP)δϕn = −PF

(
(Kδρ) ⊙ (F−1ϕn)

)
, n = 1, · · · , Nocc,

Ĥ, P ∈ CNb×Nb, δϕn ∈ CNb, Ng ≈ 16Nb.
(3)

L some multilinear map, H=−1
2∆+Vext+VHxc, Ĥ=PHP for some projector P, (ϵn,ψn) eigenpairs of H

Orbitals, Hamiltonians are represented in X⃝:=span{eG|G∈L∗, ∥G∥2≤
√

2Ecut}, Ecut cutoff energy

Densities, potentials are represented in X:={(i1a1+i2a2+i3a3)/ 3
√

Ng|0≤i1,i2,i3< 3
√

Ng}.

For technical reasons: Ng≈16Nb, Ng:=dimX, Nb:=dimX⃝.

Transform from real X to Fourier X⃝ spaces F∈CNb×Ng & vice versa F−1∈CNg×Nb using FFTs.

ϕn, δϕn, P, Ĥ ϕn, δϕn ∈ CNb, P, Ĥ ∈ CNb×Nbdiscretize in X⃝

δρ, δV , χ0, K , E δρ, δV ∈ RNg, χ0, K , E ∈ RNg×Ngdiscretize in X

Comments on the Dyson equation:
• The Dyson equation (2), real non-symmetric, is solved by GMRES with tol τ .
• At i-th GMRES iter, Nocc Sternheimer’s (3), complex Hermitian, are solved by CG with tol τCG

i ,n .
• Dyson + Sternheimer’s: nested iteratively solved linear systems.
• Difficulty: How to choose τCG

i ,n ?
• Ideal τCG

i ,n ’s: (a) accuracy τ of Dyson is guaranteed with (b) minimal computational cost
dominated by # Hamiltonian applications N =

∑
i ,n NCG

i ,n ?

Efficient Krylov subspace methods for Dyson equation

Algorithm: Standard generalized minimal residual method (GMRES)

Require: E ∈ RNg×Ng, b ∈ RNg as in (2), initial guess x0 ∈ RNg, tol τ > 0, restart period m ∈ N
Ensure: x ∈ RNg s.t. ∥rm∥2 ≤ τ where rm := b − Exm ∈ RNg is the true residual

1: r0 = b − Ex0, β = ∥r0∥, v1 = r0/β, V1 = v1, H0 = [ ]
2: for k = 1, 2, · · · , m do
3: Compute w = Evk by solving Nocc Sternheimer’s (3)
4: build orthonormal basis Vk+1 ∈ RNg×(k+1) & Hessenberg matrix Hk ∈ R(k+1)×k by Arnoldi
5: Compute the estimated residual r̃k := βe1 − Hkyk where yk = arg miny∈Ck ∥βe1 − Hky∥2
6: if ∥r̃k∥ ≤ τ then return x = x0 + Vkyk end if
7: end for
8: if ∥r̃m∥ > τ then restart: update x0 = x0 + Vmym and go to Line 1 end if

• Consequence of Arnoldi relation EVm = Vm+1Hm: ∥rm∥2 =
∥∥r̃m

∥∥
2. Hence

∥∥r̃m
∥∥

2 ≤ τ⇒∥rm∥2 ≤ τ .

An Inexact GMRES method
• Observation — Evk in Line 3 is inexact: the Sternheimer’s are solved by CG with tol τCG

i ,n > 0.

• Consequence of inexactness: inexact Arnoldi relation:
[
Ẽ

(1)
v1, Ẽ

(2)
v2, · · · , Ẽ

(m)
vm

]
= Vm+1Hm

=⇒ ∥rm∥2 ̸=
∥∥r̃m

∥∥
2, therefore, the stopping criterion

∥∥r̃m
∥∥

2 ≤ τ ≠⇒ ∥rm∥2 ≤ τ .
=⇒ the stopping criterion

∥∥r̃m
∥∥

2 ≤ τ needs to be modified carefully.

Theorem: ∀τ > 0, the accuracy of the Dyson equation ∥rm∥2 ≤ τ is
guaranteed if (a)

∥∥r̃m
∥∥

2 ≤ τ/3 and (b) for all i = 1, · · · , m

τCG
i ,n ≤ |Ω|1/2(ϵNocc+1 − ϵn)

2fn ∥Kvi∥ ∥Re(F−1Φ)∥2,∞ N1/2
g N1/2

occ

σm(Hm)
3m

1
∥r̃i−1∥

τ (4)

Corollary: If the CG tolerances τCG
i ,n verify (4) and the convergence of GMRES is at least linear, then

the true residual decreases at least superlinerly w.r.t. the total number of Hamiltonian applications:

∥ri∥ ≲ C
√

C2−NCG
≤i +C3

1 ∥r0∥. (5)

Main features of our result:
• Guaranteed accuracy of the Dyson equation with computable CG tol.
• Looser CG tol closer to convergence (as ∥r̃i−1∥ → 0, note ∥r̃i−1∥ ↘).
• Adaptive CG tol w.r.t. the properties of Sternheimer’s (eigengap ϵNocc+1 − ϵn, occupation number fn).
• Easy implementation in https://dftk.org
• First rigorous error analysis for the numerical solution of plane-wave Dyson equation.
• Methodology easy to extend to perturbation theories of other related mean-field models.

Aggressive modifications of (4) for practical implementations:
• Using Schur trick [2] for Sternheimer’s ⇒ lower eigenvalue ≳ O(1) ⇒ ϵNocc+1 − ϵn may be dropped
• Dyson equation is preconditioned ⇒ ∥Kvi∥ = O(1) ⇒ it may be dropped.
• Fourier decay of ϕn ⇒ ∥F−1Φ∥2,∞ is small ⇒ it may be replaced by its lower bound

√
Nocc/

√
|Ω|.

=⇒ We propose 3 adaptive strategies to choose τCG
i ,n in practice, as specified in the next part.

Numerical simulations

Testing strategies
Heuristics to modify (4) for practical usage from last part suggests 3 adaptive strategies as below:

Adaptive strategies τCG
i ,n

Pagr 1 · σm(Hm)
3m

1
∥r̃i−1∥

τ

Phdmd
|Ω|

2fnN1/2
g Nocc

· σm(Hm)
3m

1
∥r̃i−1∥

τ

Pgrt
|Ω|1/2

2fn ∥Kvi∥ ∥Re(F−1Φ)∥2,∞ N1/2
g N1/2

occ

· σm(Hm)
3m

1
∥r̃i−1∥

τ

3 naive strategies: PD10, PD100, PD10_n where τCG
i ,n = τ/10, τ/100, τ/(10 ∥δρ0∥2), ∀i , n, respectively.

Numerical results

Al40 Supercell: Ng = 911 250, Nb ≈ 54 200
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Figure 1: True residual norms ∥ri∥ (in solid lines) and estimated residual norms ∥r̃i∥ (in dashed lines) v.s. (A) GMRES
iteration number i and (B) total number of Hamiltonian applications for the Dyson equation of the Al40 supercell system.
Target tolerance τ = 10−9, GMRES is restarted every m = 20 iterations and Kerker preconditioning is applied.
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Figure 2: Average number of CG iterations (in solid lines) and geometric average of CG tolerances (in dashed lines) per
GMRES iteration for the Dyson equation.

Strategy Pagr Phdmd Pgrt PD10 PD100 PD10_n

∥rend∥ 1.74·10−80 7.17·10−10 2.41·10−10 1.33·10−50 1.33·10−60 5.32·10−90

NCG 168 k 196 k 228 k 194 k 219 k 275 k

Table 1: Returned true residual norm ∥rend∥, total number of Hamiltonian applications NCG for different strategies. Our
adaptive strategies are highlighted in blue, and the top three strategies for each metric are highlighted in red.

Conclusion
• Reliability: guaranteed accuracy of the Dyson equation with computable CG tolerances.
• Efficiency: superlinear convergence w.r.t. # Hamiltonian applications.
• We achieve more accurate results with fewer Hamiltonian applications! ∼ 1.5× speedup.
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