
Bridging continuous and discrete tensor representations of multivariate functions via QTT
Peter Benner1, Boris N. Khoromskij1,2, Venera Khoromskaia2, Bonan Sun1

1Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany (benner@mpi-magdeburg.mpg.de, bsun@mpi-magdeburg.mpg.de)
2Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany (bokh@mis.mpg.de, vekh@mis.mpg.de)

Chebyshev-Tucker (ChebTuck) format

Discrete and continuous tensor formats
f : [−1, 1]D → R, D = 3. Approx. f with a small number of parameters ⇝ cheap comput. with f .

1. Grid-based methods: discrete Tucker approximation of function related tensor F (contains,
e.g., function values on a grid):

F ≈
∑R

i1=1

∑R

i2=1

∑R

i3=1
βi1,i2,i3a

(1)
i1 ⊗ a(2)

i2 ⊗ a(3)
i3 ∈ Rn×n×n,

Fi1,i2,i3 := f (t (1)
i1 , t (2)

i2 , t (3)
i3 ), t (ℓ)

iℓ = −1 + (iℓ − 1)h, h = 2/(n − 1), iℓ = 1, · · · , n.
(1)

• Storage: O(DRn + RD). Disadvantage: large n required to achieve high accuracy.
2. Mesh-free methods: functional Tucker approximation of f directly:

f (x1, x2, x3) ≈ fm(x1, x2, x3) :=
∑R

i1=1

∑R

i2=1

∑R

i3=1
βi1,i2,i3v

(1)
i1 (x1)v (2)

i2 (x2)v (3)
i3 (x3)

v (ℓ)
iℓ (xℓ) =

∑m

jℓ=1
V (ℓ)

jℓ,iℓTjℓ−1(xℓ), V (ℓ) ∈ Rm×R, Tjℓ(x) = cos(jℓ arccos(x)).
(2)

• Storage: O(DRm + RD). m ≪ n for the same accuracy as grid-based methods.
• We call it ChebTuck format. It is also the format Chebfun3 [3] assumes.

Three natural tasks Input Output Note

Function to ChebTuck (See [1,3]) f : [−1, 1]3 → R ChebTuck fm
f can be evaluated

freely in [−1, 1]3

Grid to ChebTuck (See [1]) grid-based F of f ChebTuck fm Preferably m ≪ n

ChebTuck to Grid (our focus) ChebTuck fm of f grid-based F n ≫ m, but storage
largely reduced by QTT

ChebTuck to Grid-based tensor

• Given ChebTuck fm (2) of f , to get a grid-based tensor, naive approach yields a discrete Tucker:
Fm(i1, i2, i3) := fm(t (1)

i1 , t (2)
i2 , t (3)

i3 ) ⇒ Fm = β ×1 U1 ×2 U2 ×3 U3, Uℓ(iℓ, jℓ) = v (ℓ)
jℓ (t (ℓ)

iℓ ) (c.f. (1)),
i.e., each column of Uℓ contains the discretization of a polynomial v (ℓ)

jℓ (xℓ) on grid {t (ℓ)
iℓ }.

• Additional storage: O(DRn). Remedy: store columns of Uℓ as QTT [Khoromskij’11].

Definition (Quantized Tensor Trains (QTT) format of a univariate function)
Let p : [−1, 1] → R be a univariate function. Discretizing it on a uniform grid

{xi := −1 + (i − 1)h}n
i=1 with h = 2/(n − 1), n = 2d yields p = [p(xi)]ni=1 ∈ Rn.

The multi-index mapping (i1, · · · , iD) 7→ i≤d = 1+(i1−1)+2 · (i2−1)+ · · ·+2d−1 · (id −1) for iℓ = 1, 2
reshapes p into a d-dimensional tensor P ∈ R2×···×2:

P(i1, · · · , id) = p(xi≤d) = p
(
−1 + (i1 − 1)h︸ ︷︷ ︸

=:x (1)
i1

+ 2 · (i2 − 1)h︸ ︷︷ ︸
=:x (2)

i2

+ · · · + 2d−1 · (id − 1)h︸ ︷︷ ︸
=:x (d)

id

)
.

QTT of p is defined as a TT (with cores Gℓ(iℓ) ∈ Rrℓ−1×rℓ and ranks rℓ ≤ r ) of P:

p(x (1)
i1 + x (2)

i2 + · · · + x (d)
id

) = P(i1, · · · , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, · · · , id = 1, 2.

• Storage of Uℓ in QTT: O(DRdr2) = O(DRr2 log n).
• Classical result: QTT ranks of degree m polynomials ≤ m + 1 [Khoromskij’11, Oseledets’13] (numerically even log m)

⇝ reduces storage of Uℓ from O(DRn) to O(DRm2 log n) (numerically O(DR log2 m log n)).
• Fundamental task: approximate a polynomial p in QTT format efficiently⇝ our focus

Numerical experiments

Approximating Chebyshev polynomials Tk(x) in QTT
• Similar results are obtained for other class of polynomials, e.g., random linear combinations of
monomials/Chebyshev polynomials.

10−14

10−12

10−10

10−8

10−6

10−4

10−2

ℓ 2
a
p
p
ro
x
.
er
ro
r

10

20

30

40

m
ea
n
Q
T
T

ra
n
k
r̄

Method 1: dmrg cross
Method 2: Constructive
Our method

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

polynomial degree k

R
u
n
ti
m
e
(s
)

Approximation of a polynomial in QTT format

Computational methods for the TT format of P
1. Direct method: apply directly the adaptive TT cross, e.g., dmrg_cross [Savostyanov/Oseledets’11].

• Disadvantage: heuristic; doesn’t exploit the 1D nature of the problem, just view P as a black box tensor.
2. Constructive method: ∃ an analytic formula [Oseledets’13] for the cores Gℓ(iℓ) ∈ R(m+1)×(m+1).

• Disadvantage: is numerically unstable even for moderate m > 20 & produces pessimistic TT ranks m + 1.
Our novel method: Constructive (thus faster than Method 1), stable and rank adaptive.

Recall Oseledets’ constructive method for p(x) = p0 + p1x + · · · + pmxm

Introduce the notation: X≤k(x) := [1, x , · · · , xk ]⊤ ∈ Rk+1

1. Notice that with M(α + 1, β + 1) = pα+βCα
α+β for α + β ≤ m otherwise 0 (M is skew-upper triangular), it holds

p(x + y ) =
m∑
α=0

m∑
β=0

M(α + 1, β + 1)xαyβ =⇒ p(x + y ) = X≤m(x)⊤MX≤m(y ). (3)

2. Let x = xi1 and y = xi2 + · · · + xid , then separate xi1 from the rest:

p(x (1)
i1 + x (2)

i2 + · · · + x (d)
id

) = X≤m(x (1)
i1 )⊤M︸ ︷︷ ︸

=G1(i1)

X≤m(x (2)
i2 + · · · + x (d)

id
). (4)

3. Similarly, G2(i2) is constructed such that X≤m(x (2)
i2 + · · ·+ x (d)

id
) = G2(i2)X≤m(x (3)

i3 + · · ·+ x (d)
id

) holds,

=⇒ P(i1, i2, · · · , id) = G1(i1)G2(i2)X≤m(x (3)
i3 + · · · + x (d)

id
).

4. Other cores G3(i3), · · · , Gd(id) are constructed similarly.

Disadvantage: Unstable since M contains large binomial coefficients & small powers e.g. (x (1)
i1 )α

Fixing idea: Replace xα, yβ by Chebyshev polynomials!

p(x + y ) =
m∑
α=0

m∑
β=0

Mc(α + 1, β + 1)Tα(x)Tβ(y ) (5)

• A subtle but crucial difference between (3) and (5): (3) holds for all x , y ∈ R for fixed coefficients
M, while (5) only holds for x ∈ Ix and y ∈ Iy with some intervals Ix , Iy and the coefficients Mc

depend accordingly on these intervals.
• For an interval I = [a, b], introduce the notation:

T I
ℓ (x) := Tℓ ((2x − (a + b)) /(b − a)) , T I

≤k(x) := [1, T I
1(x), · · · , T I

k(x)]⊤ ∈ Rk+1 for x ∈ I = [a, b].

Our novel method: constructive, stable & rank adaptive
Recall: 1D Chebyshev interpolation
Let p : I → R be a univariate function. Then its Chebyshev interpolation of degree m is given by

p(x) ≈ gm :=
∑m

ℓ=0
cℓT I

ℓ (x) = c⊤T I
≤m(x) with c = Wp, W being an inverse DCT matrix

and p ∈ Rm+1 containing the function values of p at the Chebyshev points on I. In particular if p
is a polynomial of degree ≤ m, then the interpolation is exact: p(x) = gm(x) for all x ∈ I.

• Let I≥k := [
∑d

ℓ=k x (ℓ)
1 ,

∑d
ℓ=k x (ℓ)

2 ], then we have x (k )
ik

+ x (k+1)
ik+1

+ · · · + x (d)
id

∈ I≥k .

1. Let Mc
i1 ∈ R1×(m+1) be the Chebyshev coefficients of the function I≥2 ∋ x 7→ p(x (1)

i1 + x):

p(x (1)
i1 + x) = Mc

i1T
I≥2
≤m(x) for x ∈ I≥2, i1 = 1, 2, and in particular (6)

P(i1, i2, · · · , id) = p(x (1)
i1 + x (2)

i2 + · · · + x (d)
id

) = Mc
i1T

I≥2
≤m(x (2)

i2 + · · · + x (d)
id

) (7)

We can already set here G(i1) := Mc
i1 to obtain the first QTT core (c.f. Eq. (4))

2. Yet to make it rank adaptive, we compute a LRA (e.g. SVD) of the Chebyshev coefficients:[
Mc

1

Mc
2

]
≈ U1V1

⊤ with U1 ∈ R2×r1, V1 ∈ R(m+1)×r1.

3. Let U1,i1 := U1(i1, :) ∈ R1×r1, then Mc
i1 ≈ U1,i1V1

⊤. Then Eq. (7) becomes

P(i1, i2, · · · , id) ≈ U1,i1V1
⊤T I≥2

≤m(x (2)
i2 + · · · + x (d)

id
) = U1,i1v

(2)
≤r1

(x (2)
i2 + · · · + x (d)

id
) (8)

where we have defined the polynomial vector v (2)
j (y ) on the interval I≥2 as

v (2)
≤r1

(y ) := [v (2)
1 (y ), · · · , v (2)

r1 (y )]⊤ ∈ Rr1 with v (2)
j (y ) := V1(:, j)⊤T I≥2

≤m(y ) for j = 1, · · · , r1, y ∈ I≥2.

The first QTT core can thus be taken as G1(i1) = U1,i1.
4. For the 2nd QTT core, note that each I≥3 ∋ x 7→ v (2)

j (x (2)
i2 + x) for j = 1, · · · , r1 and i2 = 1, 2 is a

polynomial of degree ≤ m =⇒ has ≤ m+1 non-zero Cheb. coeff. denoted by Cc
2,i2(j , :) ∈ Rm+1:

v (2)
≤r1

(x (2)
i2 + · · · + x (d)

id
) = Cc

2,i2T
I≥3
≤m(x (3)

i3 + · · · + x (d)
id

). (9)

We then compute a LRA of

[
Cc

2,1

Cc
2,2

]
≈ U2V2

⊤ with U2 ∈ R2r1×r2, V2 ∈ R(m+1)×r2.

Let us denote U2,i2 := U2(r1(i2 − 1) + 1 : r1i2, :) ∈ Rr1×r2, then Cc
2,i2 ≈ U2,i2V2

⊤. Thus

P(i1, i2, · · · , id) ≈ U1,i1C
c
2,i2T

I≥3
≤m(x (3)

i3 + · · · + x (d)
id

) ≈ U1,i1U2,i2V2
⊤T I≥3

≤m(x (3)
i3 + · · · + x (d)

id
) (10)

The second QTT core is therefore G2(i2) = U2,i2. Other cores are constructed similarly.

References

[1] P. Benner, B. Khoromskij, V. Khoromskaia, B. Sun. A mesh-free hybrid Chebyshev-Tucker tensor format
with applications to multi-particle modelling, arXiv:2505.02319, 2025.
[2] P. Benner, B. Khoromskij, B. Sun. Bridging functional and discrete tensor representation of multivariate
functions using QTT, in preparation, 2025.
[3] H. Behnam, L. N. Trefethen. Chebfun in three dimensions, SIAM J. Sci. Comput., 2017.

mailto:benner@mpi-magdeburg.mpg.de
mailto:bsun@mpi-magdeburg.mpg.de
mailto:bokh@mis.mpg.de
mailto:vekh@mis.mpg.de
https://arxiv.org/abs/2503.01696

