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Chebyshev-Tucker (ChebTuck) format

Approximation of a polynomial in QTT format

Discrete and continuous tensor formats
f:[-1,1]° = R, D = 3. Approx. f with a small number of parameters ~- cheap comput. with f.

1. Grid-based methods: discrete Tucker approximation of function related tensor F (contains,
e.g., function values on a grid):
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e Storage: O(DRn + RP). Disadvantage: large n required to achieve high accuracy.
2. Mesh-free methods: functional Tucker approximation of f directly:
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e Storage: O(DRm + RP). m < n for the same accuracy as grid-based methods.
e We call it ChebTuck format. It is also the format Chebfun3 [3] assumes.

Three natural tasks Input Output Note

f can be evaluated

Function to ChebTuck (See [1,3]) f:[-1,1P =R ChebTuck fy freely in [1, 1T°

Grid to ChebTuck (See [1]) grid-based F of f ChebTuck fy Preferably m <« n

n > m, but storage

ChebTuck to Grid (our focus) largely reduced by QTT

ChebTuck fy, of f grid-based F

ChebTuck to Grid-based tensor

e Given ChebTuck fy (2) of f, to get a grid-based tensor, naive approach yields a discrete Tucker:
Fralit, o, ) = fn(t, 82, 69) = Frn = 8 51 Uy 52 Us x5 Us ugw,/e) =v(t") (cf ).

I ? b ? /
l.e., each column of U, contains the discretization of a polynomial ng ( ¢) on grid {tié 12
e Additional storage: O(DRn). Remedy: store columns of U; as QTT [khoromskij11].

Definition (Quantized Tensor Trains (QTT) format of a univariate function)

Let p:[—1,1] — R be a univariate function. Discretizing it on a uniform grid
{xj=—1+( — 1)h},”1 with h=2/(n— 1), n=2%yields p = [p(x))]7, € R".
The multi-index mapping (i1, - - ,ip) = icg=1+(1—1)+2-(b—1)+---+29 1. (jy—1) fori;=1,2
reshapes p into a d-dimensional tensor P € R%**2:
P(ir, - ,ig) = plxi.g) = p( =1+ (h = 1)h+2- (b — Dh+--- 427" (iy = h).

~ ~
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QTT of pis defined as a TT (with cores Gg(lg) R and ranks r; < r) of P:

Gd(ld) for iy, - - ,id=1,2.

PO + X7 + -+ x7) = Pir, -+, ig) = G (i) Gz(l) -

e Storage of U, in QTT: O(DRdr?) = O(DRr?log n).

e Classical result: QTT ranks of degree m polynomials < M + 1 [Khoromskij'11, Oseledets’13] (numerically even log m)
~ reduces storage of U, from O(DRn) to O(DRmM?10g n) (numerically O(DR1og? miog n)).

e Fundamental task: approximate a polynomial p in QTT format efficiently ~~ our focus

Numerical experiments

Approximating Chebyshev polynomials Tx(x) in QTT

e Similar results are obtained for other class of polynomials, e.g., random linear combinations of
monomials/Chebyshev polynomials.
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Computational methods for the TT format of P

1. Direct method: apply directly the adaptive TT cross, e.g., dnrg cross [Savostyanov/Oseledets’11].
o Disadvantage: heuristic; doesn’t exploit the 1D nature of the problem, just view P as a black box tensor.

2. Constructive method: 3 an analytic formula (oselesets'13) for the cores Gy(i;) € R{M+1)x(m+1),
o Disadvantage: is numerically unstable even for moderate m > 20 & produces pessimistic TT ranks m + 1.

Our novel method: Constructive (thus faster than Method 1), stable and rank adaptive.

Recall Oseledets’ constructive method for px)

Xk]T c Rk+1

=,00+p1X+---+mem
Introduce the notation: X_«(x) :=[1,x, -,

1. Notice that with M(a+ 1,5+ 1) = p,+sC"

a+(3

for o + 6 <m otherwise 0O (M is skew-upper triangular), It holds
m m

Px+y) =) > Ma+1,8+1)x"y" = p(x+y) = Xcm(X) MXcm(y). (3)
0=0 3=0

2. Letx =x; and y = x;, + - - - + X;,, then separate x; from the rest:

p(X,-(11) + Xi(22) Tt X'(d)) = Xem(X )

=G (/4
3. Similarly, Gx(i2) is constructed such that Xgm(x,.(f) ot Xi(dd)) = Gio(io) X< m( x,.f) +

= P(ii, b, ,ig) = G1(i1)G2(i2)X§m(Xé,3) +ook x0).

4. Other cores Gs(i3), - -- , Gy(iy) are constructed similarly.

Disadvantage: Unstable since M contains large binomial coefficients & small powers e.qg. (x,ﬂ”)of
Fixing idea: Replace x“, y” by Chebyshev polynomials!

px+y) =35 M(a+1, 8+ )TN To(y) (5)

a=0 =0

e A subtle but crucial difference between (3) and (5): (3) holds for all x, y € R for fixed coefficients

M, while only holds for x € Iy and y € I, with some intervals I, /, and the coefficients M°

depend accordingly on these intervals.

e For an interval | = [a, b], introduce the notation:
T/(x) = T ((2x — (a+ b)) /(b— &), TL(x) =

[1, T/(x), -, T)(x)]" € R for x € | = [a, b].

Our novel method: constructive, stable & rank adaptive

Recall: 1D Chebyshev interpolation
Let p : I — R be a univariate function. Then its Chebyshev interpolation of degree m is given by

D(X) & G = Zzo"f T/(x) = ¢" TL,(x) with ¢ = Wp, W being an inverse DCT matrix

and p € R™' containing the function values of p at the Chebyshev points on /. In particular if p
IS a polynomial of degree < m, then the interpolation is exact: p(x) = gn(x) for all x € .

k+1)

o Let Ly = [0, xi”, 300, 3], then we have x\ + X + X7 € by

1. Let Mf € R"™(™7 be the Chebyshev coefficients of the function .2 5 x — p(x,ﬂ” + X):

p(x\" + x) = METZE(x) for x € />2, iy = 1,2, and in particular (6)

S =,0(X,-(11) +Xi(22) +x 9y _ MCT/>2( (2)+"'+X/(dd)) (7)

We can already set here G(i1) := M to obtain the first QTT core (c.f. Eq. )
2. Yet to make it rank adaptive, we compute a LRA (e.g. SVD) of the Chebyshev coefficients:

Mz .
MC ~ U\ V1 with Uy € szr1, Vi € R{m+1)xr1

3. Let Uy = Us(iy, ) € R™", then M¢ ~

U, V1. Then Eq. (7) becomes
Plit, i, - i) ~ Uy Vi ' TEE(D + -+ X\ D) = Uy v (6P + -+ X7 (8)
where we have defined the polynomial vector vj(2)( y) on the interval -, as

VA ) = v2), - P W] € R with viIP(y) = Vi(, ) TER(y) for j =1,

The first QTT core can thus be taken as G1(/1) = Uy ;

11"

4. For the 2nd QTT core, note that each s > x — v2(xZ + x)forj=1,.-- ,nand = 1,2is a

polynomial of degree < m == has < m+1 non-zero Cheb. coeff. denoted by C;5, (/) € RM+1:

I, Y € o

VAP e X D)= C5 TR (D + -+ X)), (9)

C
gﬂ ~ Up Vo with Up € R2%72, Vp € RIM1)x12,
2,2

Let us denote Ug,,'z = Us(r(lo—1)+1:nb,:) € R"*"2 then Cg,ig ~ U2,j2 VZT. Thus

We then compute a LRA of

Ui Uy Vo I TES (X 4+ X9 (10)

13 ld

P(ir, o,y ia) & Ur G5, Ton () + -+ x)7) =

The second QTT core is therefore Gao() = Uz ;,. Other cores are constructed similarly.
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