

# Bridging continuous and discrete tensor representations of multivariate functions via QTT

Peter Benner<sup>1</sup>, Boris N. Khoromskij<sup>1,2</sup>, Venera Khoromskaia<sup>2</sup>, Bonan Sun<sup>1</sup>

<sup>1</sup>Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany (benner@mpi-magdeburg.mpg.de, bsun@mpi-magdeburg.mpg.de)

<sup>2</sup>Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany (bokh@mis.mpg.de, vekh@mis.mpg.de)

## Chebyshev-Tucker (ChebTuck) format

### Discrete and continuous tensor formats

$f : [-1, 1]^D \rightarrow \mathbb{R}$ ,  $D = 3$ . Approx.  $f$  with a small number of parameters  $\rightsquigarrow$  cheap comput. with  $f$ .

1. **Grid-based methods:** discrete Tucker approximation of function related tensor  $\mathbf{F}$  (contains, e.g., function values on a grid):

$$\mathbf{F} \approx \sum_{i_1=1}^R \sum_{i_2=1}^R \sum_{i_3=1}^R \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)} \in \mathbb{R}^{n \times n \times n}, \quad (1)$$

$$\mathbf{F}_{i_1, i_2, i_3} := f(t_{i_1}^{(1)}, t_{i_2}^{(2)}, t_{i_3}^{(3)}), \quad t_{i_\ell}^{(\ell)} = -1 + (i_\ell - 1)h, \quad h = 2/(n-1), \quad i_\ell = 1, \dots, n.$$

• Storage:  $\mathcal{O}(DRn + R^D)$ . Disadvantage: large  $n$  required to achieve high accuracy.

2. **Mesh-free methods:** functional Tucker approximation of  $f$  directly:

$$f(x_1, x_2, x_3) \approx f_m(x_1, x_2, x_3) := \sum_{i_1=1}^R \sum_{i_2=1}^R \sum_{i_3=1}^R \beta_{i_1, i_2, i_3} V_{i_1}^{(1)}(x_1) V_{i_2}^{(2)}(x_2) V_{i_3}^{(3)}(x_3) \quad (2)$$

$$V_{i_\ell}^{(\ell)}(x_\ell) = \sum_{j_\ell=1}^m V_{j_\ell, i_\ell}^{(\ell)} T_{j_\ell-1}(x_\ell), \quad V^{(\ell)} \in \mathbb{R}^{m \times R}, \quad T_j(x) = \cos(j \arccos(x)).$$

• Storage:  $\mathcal{O}(DRm + R^D)$ .  $m \ll n$  for the same accuracy as grid-based methods.

• We call it **ChebTuck format**. It is also the format Chebfun3 [3] assumes.

| Three natural tasks              | Input                                  | Output                  | Note                                           |
|----------------------------------|----------------------------------------|-------------------------|------------------------------------------------|
| Function to ChebTuck (See [1,3]) | $f : [-1, 1]^3 \rightarrow \mathbb{R}$ | ChebTuck $f_m$          | $f$ can be evaluated freely in $[-1, 1]^3$     |
| Grid to ChebTuck (See [1])       | grid-based $\mathbf{F}$ of $f$         | ChebTuck $f_m$          | Preferably $m \ll n$                           |
| ChebTuck to Grid (our focus)     | ChebTuck $f_m$ of $f$                  | grid-based $\mathbf{F}$ | $n \gg m$ , but storage largely reduced by QTT |

## ChebTuck to Grid-based tensor

• Given ChebTuck  $f_m$  (2) of  $f$ , to get a grid-based tensor, naive approach yields a discrete Tucker:

$\mathbf{F}_m(i_1, i_2, i_3) := f_m(t_{i_1}^{(1)}, t_{i_2}^{(2)}, t_{i_3}^{(3)}) \Rightarrow \mathbf{F}_m = \beta \times_1 U_1 \times_2 U_2 \times_3 U_3, \quad U_\ell(i_\ell, j_\ell) = V_{i_\ell}^{(\ell)}(t_{j_\ell}^{(\ell)})$  (c.f. (1)), i.e., each column of  $U_\ell$  contains the discretization of a polynomial  $V_{i_\ell}^{(\ell)}(x_\ell)$  on grid  $\{t_{j_\ell}^{(\ell)}\}$ .

• **Additional storage:**  $\mathcal{O}(DRn)$ . **Remedy:** store columns of  $U_\ell$  as QTT [Khoromskij'11].

### Definition (Quantized Tensor Trains (QTT) format of a univariate function)

Let  $p : [-1, 1] \rightarrow \mathbb{R}$  be a univariate function. Discretizing it on a uniform grid  $\{x_i := -1 + (i-1)h\}_{i=1}^n$  with  $h = 2/(n-1)$ ,  $n = 2^d$  yields  $\mathbf{p} = [p(x_i)]_{i=1}^n \in \mathbb{R}^n$ .

The multi-index mapping  $(i_1, \dots, i_d) \mapsto i_{\leq d} = 1 + (i_1 - 1) + 2 \cdot (i_2 - 1) + \dots + 2^{d-1} \cdot (i_d - 1)$  for  $i_\ell = 1, 2$  reshapes  $\mathbf{p}$  into a  $d$ -dimensional tensor  $\mathbf{P} \in \mathbb{R}^{2 \times \dots \times 2}$ :

$$\mathbf{P}(i_1, \dots, i_d) = p(x_{i_{\leq d}}) = p\left(\underbrace{-1 + (i_1 - 1)h}_{=x_{i_1}^{(1)}} + \underbrace{2 \cdot (i_2 - 1)h}_{=x_{i_2}^{(2)}} + \dots + \underbrace{2^{d-1} \cdot (i_d - 1)h}_{=x_{i_d}^{(d)}}\right).$$

QTT of  $p$  is defined as a TT (with cores  $\mathbf{G}_\ell(i_\ell) \in \mathbb{R}^{r_{\ell-1} \times r_\ell}$  and ranks  $r_\ell \leq r$ ) of  $\mathbf{P}$ :

$$p(x_{i_1}^{(1)} + x_{i_2}^{(2)} + \dots + x_{i_d}^{(d)}) = \mathbf{P}(i_1, \dots, i_d) = \mathbf{G}_1(i_1) \mathbf{G}_2(i_2) \dots \mathbf{G}_d(i_d) \text{ for } i_1, \dots, i_d = 1, 2.$$

• Storage of  $U_\ell$  in QTT:  $\mathcal{O}(DRdr^2) = \mathcal{O}(DRr^2 \log n)$ .

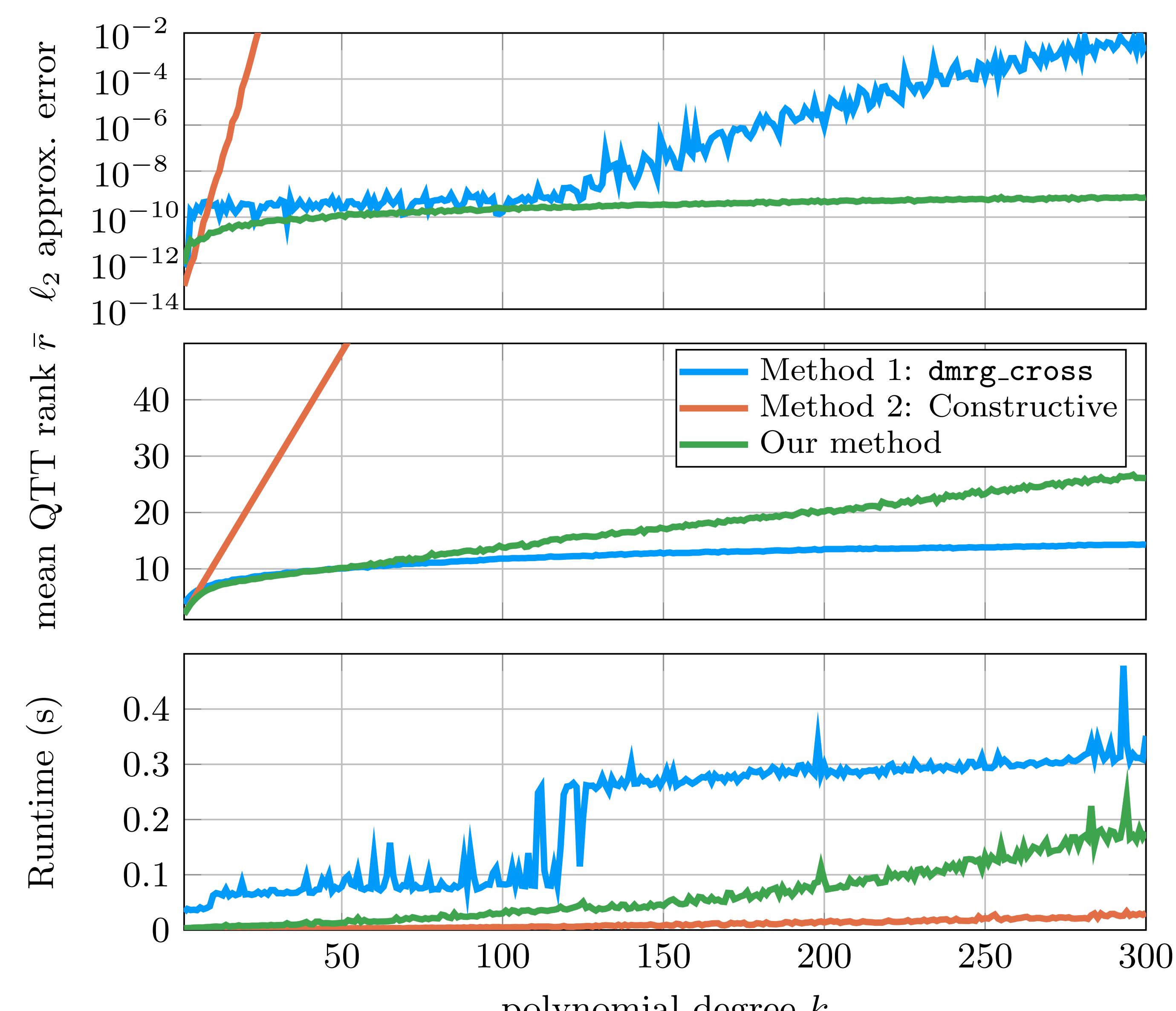
• **Classical result:** QTT ranks of degree  $m$  polynomials  $\leq m+1$  [Khoromskij'11, Oseledets'13] (numerically even  $\log m$ )  $\rightsquigarrow$  reduces storage of  $U_\ell$  from  $\mathcal{O}(DRn)$  to  $\mathcal{O}(DRm^2 \log n)$  (numerically  $\mathcal{O}(DR \log^2 m \log n)$ ).

• **Fundamental task:** approximate a polynomial  $p$  in QTT format efficiently  $\rightsquigarrow$  our focus

## Numerical experiments

### Approximating Chebyshev polynomials $T_k(x)$ in QTT

• Similar results are obtained for other class of polynomials, e.g., random linear combinations of monomials/Chebyshev polynomials.



## Approximation of a polynomial in QTT format

### Computational methods for the TT format of P

1. **Direct method:** apply directly the adaptive TT cross, e.g., dmrg\_cross [Savostyanov/Oseledets'11].

• Disadvantage: heuristic; doesn't exploit the 1D nature of the problem, just view  $\mathbf{P}$  as a black box tensor.

2. **Constructive method:**  $\exists$  an analytic formula [Oseledets'13] for the cores  $\mathbf{G}_\ell(i_\ell) \in \mathbb{R}^{(m+1) \times (m+1)}$ .

• Disadvantage: is numerically unstable even for moderate  $m > 20$  & produces pessimistic TT ranks  $m+1$ .

**Our novel method:** Constructive (thus faster than Method 1), stable and rank adaptive.

### Recall Oseledets' constructive method for $p(x) = p_0 + p_1 x + \dots + p_m x^m$

Introduce the notation:  $X_{\leq k}(x) := [1, x, \dots, x^k]^\top \in \mathbb{R}^{k+1}$

1. Notice that with  $M(\alpha + 1, \beta + 1) = p_{\alpha+\beta} C_{\alpha+\beta}^\alpha$  for  $\alpha + \beta \leq m$  otherwise 0 ( $M$  is skew-upper triangular), it holds

$$p(x+y) = \sum_{\alpha=0}^m \sum_{\beta=0}^m M(\alpha + 1, \beta + 1) x^\alpha y^\beta \Rightarrow p(x+y) = X_{\leq m}(x)^\top M X_{\leq m}(y). \quad (3)$$

2. Let  $x = x_{i_1}$  and  $y = x_{i_2} + \dots + x_{i_d}$ , then separate  $x_{i_1}$  from the rest:

$$p(x_{i_1}^{(1)} + x_{i_2}^{(2)} + \dots + x_{i_d}^{(d)}) = X_{\leq m}(x_{i_1}^{(1)})^\top M X_{\leq m}(x_{i_2}^{(2)} + \dots + x_{i_d}^{(d)}). \quad (4)$$

3. Similarly,  $\mathbf{G}_2(i_2)$  is constructed such that  $X_{\leq m}(x_{i_2}^{(2)} + \dots + x_{i_d}^{(d)}) = \mathbf{G}_2(i_2) X_{\leq m}(x_{i_3}^{(3)} + \dots + x_{i_d}^{(d)})$  holds,

$$\Rightarrow \mathbf{P}(i_1, i_2, \dots, i_d) = \mathbf{G}_1(i_1) \mathbf{G}_2(i_2) X_{\leq m}(x_{i_3}^{(3)} + \dots + x_{i_d}^{(d)}).$$

4. Other cores  $\mathbf{G}_3(i_3), \dots, \mathbf{G}_d(i_d)$  are constructed similarly.

**Disadvantage:** Unstable since  $M$  contains large binomial coefficients & small powers e.g.  $(x_{i_1}^{(1)})^\alpha$

**Fixing idea:** Replace  $x^\alpha, y^\beta$  by Chebyshev polynomials!

$$p(x+y) = \sum_{\alpha=0}^m \sum_{\beta=0}^m M^c(\alpha + 1, \beta + 1) T_\alpha(x) T_\beta(y) \quad (5)$$

• A subtle but crucial difference between (3) and (5): (3) holds for all  $x, y \in \mathbb{R}$  for fixed coefficients  $M$ , while (5) only holds for  $x \in I_x$  and  $y \in I_y$  with some intervals  $I_x, I_y$  and the coefficients  $M^c$  depend accordingly on these intervals.

• For an interval  $I = [a, b]$ , introduce the notation:

$$T_\ell'(x) := T_\ell((2x - (a+b)) / (b-a)), \quad T_{\leq k}'(x) := [1, T_1'(x), \dots, T_k'(x)]^\top \in \mathbb{R}^{k+1} \text{ for } x \in I = [a, b].$$

### Our novel method: constructive, stable & rank adaptive

#### Recall: 1D Chebyshev interpolation

Let  $p : I \rightarrow \mathbb{R}$  be a univariate function. Then its Chebyshev interpolation of degree  $m$  is given by

$$p(x) \approx g_m := \sum_{\ell=0}^m c_\ell T_\ell'(x) = \mathbf{c}^\top T_{\leq m}'(x) \text{ with } \mathbf{c} = \mathbf{W} \mathbf{p}, \quad \mathbf{W}$$
 being an inverse DCT matrix

and  $\mathbf{p} \in \mathbb{R}^{m+1}$  containing the function values of  $p$  at the Chebyshev points on  $I$ . In particular if  $p$  is a polynomial of degree  $\leq m$ , then the interpolation is **exact**:  $p(x) = g_m(x)$  for all  $x \in I$ .

• Let  $I_{\leq k} := [\sum_{\ell=k}^d x_1^{(\ell)}, \sum_{\ell=k}^d x_2^{(\ell)}]$ , then we have  $x_{i_k}^{(k)} + x_{i_{k+1}}^{(k+1)} + \dots + x_{i_d}^{(d)} \in I_{\leq k}$ .

1. Let  $M_h^c \in \mathbb{R}^{1 \times (m+1)}$  be the Chebyshev coefficients of the function  $I_{\leq 2} \ni x \mapsto p(x_{i_1}^{(1)} + x)$ :

$$p(x_{i_1}^{(1)} + x) = M_h^c T_{\leq m}^{I_{\leq 2}}(x) \text{ for } x \in I_{\leq 2}, \quad i_1 = 1, 2, \text{ and in particular} \quad (6)$$

$$p(i_1, i_2, \dots, i_d) = p(x_{i_1}^{(1)} + x_{i_2}^{(2)} + \dots + x_{i_d}^{(d)}) = M_h^c T_{\leq m}^{I_{\leq 2}}(x_{i_2}^{(2)} + \dots + x_{i_d}^{(d)}) \quad (7)$$

We can already set here  $\mathbf{G}(i_1) := M_h^c$  to obtain the first QTT core (c.f. Eq. (4))

2. Yet to make it rank adaptive, we compute a LRA (e.g. SVD) of the Chebyshev coefficients:

$$\begin{bmatrix} M_1^c \\ M_2^c \end{bmatrix} \approx U_1 V_1^\top \text{ with } U_1 \in \mathbb{R}^{2 \times r_1}, V_1 \in \mathbb{R}^{(m+1) \times r_1}.$$

3. Let  $U_{1,i_1} := U_1(i_1, :)$  in  $\mathbb{R}^{1 \times r_1}$ , then  $M_h^c \approx U_{1,i_1} V_1^\top$ . Then Eq. (7) becomes

$$\mathbf{P}(i_1, i_2, \dots, i_d) \approx U_{1,i_1} V_1^\top T_{\leq m}^{I_{\leq 2}}(x_{i_2}^{(2)} + \dots + x_{i_d}^{(d)}) = U_{1,i_1} V_{\leq r_1}^{(2)}(x_{i_2}^{(2)} + \dots + x_{i_d}^{(d)}) \quad (8)$$

where we have defined the polynomial vector  $V_j^{(2)}(y)$  on the interval  $I_{\leq 2}$  as

$$V_{\leq r_1}^{(2)}(y) := [V_1^{(2)}(y), \dots, V_{r_1}^{(2)}(y)]^\top \in \mathbb{R}^{r_1} \text{ with } V_j^{(2)}(y) := V_1(:, j)^\top T_{\leq m}^{I_{\leq 2}}(y) \text{ for } j = 1, \dots, r_1, y \in I_{\leq 2}.$$

The first QTT core can thus be taken as  $\mathbf{G}_1(i_1) = U_{1,i_1}$ .

4. For the 2nd QTT core, note that each  $I_{\leq 3} \ni x \mapsto V_j^{(2)}(x_{i_2}^{(2)} + x)$  for  $j = 1, \dots,$