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Chebyshev-Tucker (ChebTuck) format

Discrete and continuous tensor formats
f : [−1, 1]D → R, D = 3. Approx. f with a small number of parameters ⇝ cheap comput. with f .

1. Grid-based methods: discrete Tucker approximation of function related tensor F (contains,
e.g., function values on a grid):

F ≈
∑R

i1=1

∑R

i2=1

∑R

i3=1
βi1,i2,i3a

(1)
i1 ⊗ a(2)

i2 ⊗ a(3)
i3 ∈ Rn×n×n,

Fi1,i2,i3 := f (t (1)
i1 , t (2)

i2 , t (3)
i3 ), t (ℓ)

iℓ = −1 + (iℓ − 1)h, h = 2/(n − 1), iℓ = 1, · · · , n.
(1)

• Storage: O(DRn + RD). Disadvantage: large n required to achieve high accuracy.
2. Mesh-free methods: functional Tucker approximation of f directly:

f (x1, x2, x3) ≈ fm(x1, x2, x3) :=
∑R

i1=1

∑R

i2=1

∑R

i3=1
βi1,i2,i3v

(1)
i1 (x1)v (2)

i2 (x2)v (3)
i3 (x3)

v (ℓ)
iℓ (xℓ) =

∑m

jℓ=1
V (ℓ)

jℓ,iℓTjℓ−1(xℓ), V (ℓ) ∈ Rm×R, Tjℓ(x) = cos(jℓ arccos(x)).
(2)

• Storage: O(DRm + RD). m ≪ n for the same accuracy as grid-based methods.
• We call it ChebTuck format. It is also the format Chebfun3 [3] assumes.

Three natural tasks Input Output Note

Function to ChebTuck (See [1,3]) f : [−1, 1]3 → R ChebTuck fm
f can be evaluated

freely in [−1, 1]3

Grid to ChebTuck (See [1]) grid-based F of f ChebTuck fm Preferably m ≪ n

ChebTuck to Grid (our focus) ChebTuck fm of f grid-based F n ≫ m, but storage
largely reduced by QTT

ChebTuck to Grid-based tensor

• Given ChebTuck fm (2) of f , to get a grid-based tensor, naive approach yields a discrete Tucker:
Fm(i1, i2, i3) := fm(t (1)

i1 , t (2)
i2 , t (3)

i3 ) ⇒ Fm = β ×1 U1 ×2 U2 ×3 U3, Uℓ(iℓ, jℓ) = v (ℓ)
jℓ (t (ℓ)

iℓ ) (c.f. (1)),
i.e., each column of Uℓ contains the discretization of a polynomial v (ℓ)

jℓ (xℓ) on grid {t (ℓ)
iℓ }.

• Additional storage: O(DRn). Remedy: store columns of Uℓ as QTT [Khoromskij’11].

Definition (Quantized Tensor Trains (QTT) format of a univariate function)
Let p : [−1, 1] → R be a univariate function. Discretizing it on a uniform grid

{xi := −1 + (i − 1)h}n
i=1 with h = 2/(n − 1), n = 2d yields p = [p(xi)]ni=1 ∈ Rn.

The multi-index mapping (i1, · · · , iD) 7→ i≤d = 1+(i1−1)+2 · (i2−1)+ · · ·+2d−1 · (id −1) for iℓ = 1, 2
reshapes p into a d-dimensional tensor P ∈ R2×···×2:

P(i1, · · · , id) = p(xi≤d) = p
(
−1 + (i1 − 1)h︸ ︷︷ ︸

=:x (1)
i1

+ 2 · (i2 − 1)h︸ ︷︷ ︸
=:x (2)

i2

+ · · · + 2d−1 · (id − 1)h︸ ︷︷ ︸
=:x (d)

id

)
.

QTT of p is defined as a TT (with cores Gℓ(iℓ) ∈ Rrℓ−1×rℓ and ranks rℓ ≤ r ) of P:

p(x (1)
i1 + x (2)

i2 + · · · + x (d)
id

) = P(i1, · · · , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, · · · , id = 1, 2.

• Storage of Uℓ in QTT: O(DRdr2) = O(DRr2 log n).
• Classical result: QTT ranks of degree m polynomials ≤ m + 1 [Khoromskij’11, Oseledets’13] (numerically even log m)

⇝ reduces storage of Uℓ from O(DRn) to O(DRm2 log n) (numerically O(DR log2 m log n)).
• Fundamental task: approximate a polynomial p in QTT format efficiently⇝ our focus

Numerical experiments

Approximating Chebyshev polynomials Tk(x) in QTT
• Similar results are obtained for other class of polynomials, e.g., random linear combinations of
monomials/Chebyshev polynomials.
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Approximation of a polynomial in QTT format

Computational methods for the TT format of P
1. Direct method: apply directly the adaptive TT cross, e.g., dmrg_cross [Savostyanov/Oseledets’11].

• Disadvantage: heuristic; doesn’t exploit the 1D nature of the problem, just view P as a black box tensor.
2. Constructive method: ∃ an analytic formula [Oseledets’13] for the cores Gℓ(iℓ) ∈ R(m+1)×(m+1).

• Disadvantage: is numerically unstable even for moderate m > 20 & produces pessimistic TT ranks m + 1.
Our novel method: Constructive (thus faster than Method 1), stable and rank adaptive.

Recall Oseledets’ constructive method for p(x) = p0 + p1x + · · · + pmxm

Introduce the notation: X≤k(x) := [1, x , · · · , xk ]⊤ ∈ Rk+1

1. Notice that with M(α + 1, β + 1) = pα+βCα
α+β for α + β ≤ m otherwise 0 (M is skew-upper triangular), it holds

p(x + y ) =
m∑
α=0

m∑
β=0

M(α + 1, β + 1)xαyβ =⇒ p(x + y ) = X≤m(x)⊤MX≤m(y ). (3)

2. Let x = xi1 and y = xi2 + · · · + xid , then separate xi1 from the rest:

p(x (1)
i1 + x (2)

i2 + · · · + x (d)
id

) = X≤m(x (1)
i1 )⊤M︸ ︷︷ ︸

=G1(i1)

X≤m(x (2)
i2 + · · · + x (d)

id
). (4)

3. Similarly, G2(i2) is constructed such that X≤m(x (2)
i2 + · · ·+ x (d)

id
) = G2(i2)X≤m(x (3)

i3 + · · ·+ x (d)
id

) holds,

=⇒ P(i1, i2, · · · , id) = G1(i1)G2(i2)X≤m(x (3)
i3 + · · · + x (d)

id
).

4. Other cores G3(i3), · · · , Gd(id) are constructed similarly.

Disadvantage: Unstable since M contains large binomial coefficients & small powers e.g. (x (1)
i1 )α

Fixing idea: Replace xα, yβ by Chebyshev polynomials!

p(x + y ) =
m∑
α=0

m∑
β=0

Mc(α + 1, β + 1)Tα(x)Tβ(y ) (5)

• A subtle but crucial difference between (3) and (5): (3) holds for all x , y ∈ R for fixed coefficients
M, while (5) only holds for x ∈ Ix and y ∈ Iy with some intervals Ix , Iy and the coefficients Mc

depend accordingly on these intervals.
• For an interval I = [a, b], introduce the notation:

T I
ℓ (x) := Tℓ ((2x − (a + b)) /(b − a)) , T I

≤k(x) := [1, T I
1(x), · · · , T I

k(x)]⊤ ∈ Rk+1 for x ∈ I = [a, b].

Our novel method: constructive, stable & rank adaptive
Recall: 1D Chebyshev interpolation
Let p : I → R be a univariate function. Then its Chebyshev interpolation of degree m is given by

p(x) ≈ gm :=
∑m

ℓ=0
cℓT I

ℓ (x) = c⊤T I
≤m(x) with c = Wp, W being an inverse DCT matrix

and p ∈ Rm+1 containing the function values of p at the Chebyshev points on I. In particular if p
is a polynomial of degree ≤ m, then the interpolation is exact: p(x) = gm(x) for all x ∈ I.

• Let I≥k := [
∑d

ℓ=k x (ℓ)
1 ,

∑d
ℓ=k x (ℓ)

2 ], then we have x (k )
ik

+ x (k+1)
ik+1

+ · · · + x (d)
id

∈ I≥k .

1. Let Mc
i1 ∈ R1×(m+1) be the Chebyshev coefficients of the function I≥2 ∋ x 7→ p(x (1)

i1 + x):

p(x (1)
i1 + x) = Mc

i1T
I≥2
≤m(x) for x ∈ I≥2, i1 = 1, 2, and in particular (6)

P(i1, i2, · · · , id) = p(x (1)
i1 + x (2)

i2 + · · · + x (d)
id

) = Mc
i1T

I≥2
≤m(x (2)

i2 + · · · + x (d)
id

) (7)

We can already set here G(i1) := Mc
i1 to obtain the first QTT core (c.f. Eq. (4))

2. Yet to make it rank adaptive, we compute a LRA (e.g. SVD) of the Chebyshev coefficients:[
Mc

1

Mc
2

]
≈ U1V1

⊤ with U1 ∈ R2×r1, V1 ∈ R(m+1)×r1.

3. Let U1,i1 := U1(i1, :) ∈ R1×r1, then Mc
i1 ≈ U1,i1V1

⊤. Then Eq. (7) becomes

P(i1, i2, · · · , id) ≈ U1,i1V1
⊤T I≥2

≤m(x (2)
i2 + · · · + x (d)

id
) = U1,i1v

(2)
≤r1

(x (2)
i2 + · · · + x (d)

id
) (8)

where we have defined the polynomial vector v (2)
j (y ) on the interval I≥2 as

v (2)
≤r1

(y ) := [v (2)
1 (y ), · · · , v (2)

r1 (y )]⊤ ∈ Rr1 with v (2)
j (y ) := V1(:, j)⊤T I≥2

≤m(y ) for j = 1, · · · , r1, y ∈ I≥2.

The first QTT core can thus be taken as G1(i1) = U1,i1.
4. For the 2nd QTT core, note that each I≥3 ∋ x 7→ v (2)

j (x (2)
i2 + x) for j = 1, · · · , r1 and i2 = 1, 2 is a

polynomial of degree ≤ m =⇒ has ≤ m+1 non-zero Cheb. coeff. denoted by Cc
2,i2(j , :) ∈ Rm+1:

v (2)
≤r1

(x (2)
i2 + · · · + x (d)

id
) = Cc

2,i2T
I≥3
≤m(x (3)

i3 + · · · + x (d)
id

). (9)

We then compute a LRA of

[
Cc

2,1

Cc
2,2

]
≈ U2V2

⊤ with U2 ∈ R2r1×r2, V2 ∈ R(m+1)×r2.

Let us denote U2,i2 := U2(r1(i2 − 1) + 1 : r1i2, :) ∈ Rr1×r2, then Cc
2,i2 ≈ U2,i2V2

⊤. Thus

P(i1, i2, · · · , id) ≈ U1,i1C
c
2,i2T

I≥3
≤m(x (3)

i3 + · · · + x (d)
id

) ≈ U1,i1U2,i2V2
⊤T I≥3

≤m(x (3)
i3 + · · · + x (d)

id
) (10)

The second QTT core is therefore G2(i2) = U2,i2. Other cores are constructed similarly.
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