EFTT 000000 EFTT approximation algorithm 000000000

Numerical experiments

Approximation to multivariate functions in the extended tensor train format

Bonan Sun

EPF Lausanne, Switzerland bonan.sun@epfl.ch https://bonans.github.io/

Based on a joint work with Christoph Strössner and Daniel Kressner

SIAM LA24, May 14, 2024

うせん 前 ふかん キャー・モー ひょう

EFTT 000000 EFTT approximation algorithm 000000000

Numerical experiments

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Organization

- In Functional low-rank approximation
- On the extended functional tensor train (EFTT) format
- IFTT approximation algorithm
- Output State Numerical experiments

EFTT 000000 EFTT approximation algorithm 000000000

Numerical experiments

Organization

Inctional low-rank approximation

In the extended functional tensor train (EFTT) format

- IFTT approximation algorithm
- O Numerical experiments

000000

EFTT approximation algorithm 000000000

Numerical experiments

Functional low-rank approximations

Consider f : [−1, 1]^d → ℝ. Simplest low-rank structure of f is the separation of variables:

$$f(x_1, x_2, \cdots, x_d) \approx \sum_{\alpha=1}^{\kappa} g_{\alpha}^{(1)}(x_1) g_{\alpha}^{(2)}(x_2) \cdots g_{\alpha}^{(d)}(x_d),$$

which uses dR univariate functions $g_{\alpha}^{(i)}: [-1,1] \rightarrow \mathbb{R}$.

・ロト・日本・日本・日本・日本・日本

000000

EFTT approximation algorithm 000000000

Functional low-rank approximations

Consider f : [-1, 1]^d → ℝ. Simplest low-rank structure of f is the separation of variables:

$$f(x_1, x_2, \cdots, x_d) \approx \sum_{\alpha=1}^{\kappa} g_{\alpha}^{(1)}(x_1) g_{\alpha}^{(2)}(x_2) \cdots g_{\alpha}^{(d)}(x_d),$$

which uses dR univariate functions $g_{\alpha}^{(i)}: [-1,1] \rightarrow \mathbb{R}$.

• Often beneficial to impose additional low-rank structures.

000000

EFTT approximation algorithm 000000000

Numerical experiments

Functional low-rank approximations

Consider f : [−1, 1]^d → ℝ. Simplest low-rank structure of f is the separation of variables:

$$f(x_1, x_2, \cdots, x_d) \approx \sum_{\alpha=1}^{\kappa} g_{\alpha}^{(1)}(x_1) g_{\alpha}^{(2)}(x_2) \cdots g_{\alpha}^{(d)}(x_d),$$

which uses dR univariate functions $g_{\alpha}^{(i)}: [-1,1] \rightarrow \mathbb{R}$.

- Often beneficial to impose additional low-rank structures.
- This work focuses on the functional tensor train (FTT) structure \rightsquigarrow

$$f(x_1,\ldots,x_d) \approx \sum_{\alpha_1=1}^{R_1} \ldots, \sum_{\alpha_{d-1}=1}^{R_{d-1}} g_{1,\alpha_1}^{(1)}(x_1) g_{\alpha_1,\alpha_2}^{(2)}(x_2) \cdots g_{\alpha_{d-2},\alpha_{d-1}}^{(d-1)}(x_{d-1}) g_{\alpha_{d-1},1}^{(d)}(x_d),$$

which uses dR^2 univariate functions $g_{\alpha_{i-1},\alpha_i}^{(i)}: [-1,1] \to \mathbb{R}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

000000

EFTT approximation algorithm

Numerical experiments

Functional low-rank approximations

• For $f: [-1,1]^d \to \mathbb{R}$, functional tensor train format:

$$f(x_{1},...,x_{d}) \approx \sum_{\alpha_{1}=1}^{R_{1}}...,\sum_{\alpha_{d-1}=1}^{R_{d-1}} g_{1,\alpha_{1}}^{(1)}(x_{1})g_{\alpha_{1},\alpha_{2}}^{(2)}(x_{2})\cdots g_{\alpha_{d-2},\alpha_{d-1}}^{(d-1)}(x_{d-1})g_{\alpha_{d-1},1}^{(d)}(x_{d})$$
$$= \left[g_{1,1}^{(1)}(x_{1})\cdots g_{1,R_{1}}^{(1)}(x_{1})\right] \left[\begin{array}{c}g_{1,1}^{(2)}(x_{2})\cdots g_{1,R_{2}}^{(2)}(x_{2})\\\vdots\\\vdots\\g_{R_{1},1}^{(2)}(x_{2})\cdots g_{R_{1},R_{2}}^{(2)}(x_{2})\end{array}\right]\cdots \left[\begin{array}{c}g_{1,1}^{(d-1)}(x_{d-1})\cdots g_{1,R_{d-1}}^{(d-1)}(x_{d-1})\\\vdots\\g_{R_{d-2},1}^{(d-1)}(x_{d-1})\cdots g_{R_{d-2},R_{d-1}}^{(d-1)}(x_{d-1})\end{array}\right] \left[\begin{array}{c}g_{1,1}^{(d)}(x_{d})\\\vdots\\g_{R_{d-1},1}^{(d)}(x_{d})\\\vdots\\g_{R_{d-2},1}^{(d)}(x_{d-1})\cdots g_{R_{d-2},R_{d-1}}^{(d-1)}(x_{d-1})\end{array}\right]$$

000000

EFTT approximation algorithm 000000000

Numerical experiments

Functional low-rank approximations

• For $f: [-1,1]^d \to \mathbb{R}$, functional tensor train format:

$$f(x_{1},...,x_{d}) \approx \left[g_{1,1}^{(1)}(x_{1})\cdots g_{1,R_{1}}^{(1)}(x_{1})\right] \left[\begin{array}{cccc}g_{1,1}^{(2)}(x_{2})\cdots g_{1,R_{2}}^{(2)}(x_{2})\\\vdots\\g_{R_{1},1}^{(2)}(x_{2})\cdots g_{1,R_{2}}^{(2)}(x_{2})\end{array}\right]\cdots \left[\begin{array}{cccc}g_{1,1}^{(d-1)}(x_{d-1})\cdots g_{1,R_{d-1}}^{(d-1)}(x_{d-1})\\\vdots\\g_{R_{d-2},1}^{(d-1)}(x_{d-1})\cdots g_{R_{d-2},R_{d-1}}^{(d-1)}(x_{d-1})\end{array}\right] \left[\begin{array}{c}g_{1,1}^{(d)}(x_{d})\\\vdots\\g_{R_{d-1},1}^{(d)}(x_{d})\end{array}\right]$$

• For $\mathcal{T} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$, (discrete) tensor train format:

$$\mathcal{T}_{i_{1},\cdots,i_{d}} \approx \left[\mathcal{G}_{1,i_{1},1}^{(1)} \cdots \mathcal{G}_{1,i_{1},R_{1}}^{(1)} \right] \left[\begin{array}{ccc} \mathcal{G}_{1,i_{2},1}^{(2)} & \cdots & \mathcal{G}_{1,i_{2},R_{2}}^{(2)} \\ \vdots & \ddots & \vdots \\ \mathcal{G}_{R_{1},i_{2},1}^{(2)} & \cdots & \mathcal{G}_{R_{1},i_{2},R_{2}}^{(2)} \end{array} \right] \cdots \left[\begin{array}{ccc} \mathcal{G}_{1,i_{d-1},1}^{(d-1)} & \cdots & \mathcal{G}_{1,i_{d-1},R_{d-1}}^{(d-1)} \\ \vdots & \ddots & \vdots \\ \mathcal{G}_{R_{d-2},i_{d-1},1}^{(d-1)} & \cdots & \mathcal{G}_{R_{d-2},i_{d-1},R_{d-1}}^{(d-1)} \end{array} \right] \left[\begin{array}{c} \mathcal{G}_{1,i_{d},1}^{(d)} \\ \vdots \\ \mathcal{G}_{R_{d-1},i_{d},1}^{(d)} \end{array} \right]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

EFTT 000000 EFTT approximation algorithm 000000000

Numerical experiments

Functional low-rank approximation: applications

FTT format:

$$f(x_1,\ldots,x_d) \approx \sum_{\alpha_1=1}^{R_1} \ldots, \sum_{\alpha_{d-1}=1}^{R_{d-1}} g_{1,\alpha_1}^{(1)}(x_1) g_{\alpha_1,\alpha_2}^{(2)}(x_2) \cdots g_{\alpha_{d-1},1}^{(d)}(x_d)$$

• Various operations can be performed efficiently, e.g., integration:

$$\int_{[-1,1]^d} f(x_1,\ldots,x_d) \, \mathrm{d} \, x_1 \cdots \, \mathrm{d} \, x_d \approx$$

$$\sum_{\alpha_1=1}^{R_1} \ldots, \sum_{\alpha_{d-1}=1}^{R_{d-1}} \int_{-1}^1 g_{1,\alpha_1}^{(1)}(x_1) \, \mathrm{d} \, x_1 \int_{-1}^1 g_{\alpha_1,\alpha_2}^{(2)}(x_2) \, \mathrm{d} \, x_2 \cdots \int_{-1}^1 g_{\alpha_{d-1},1}^{(d)}(x_d) \, \mathrm{d} \, x_d.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▶ ▲□▶

EFTT approximation algorithm

Numerical experiments

Functional low-rank approximation: applications

[Dektor, Rodgers, Venturi 2021]

(b) FHT for Vlasov-Poisson equation [Guo, Qiu 2024]

• Applications: solution of PDEs [Bachmayr, Schneider, Uschmajew 2016], data compression [Rai, Kolla, Cannada, Gorodetsky 2019], Optimal control [Oster, Sallandt, Schneider 2016], UQ [Dolgov, Scheichl 2019], etc.

EFTT •00000 EFTT approximation algorithm 000000000

Numerical experiments

Organization

Inctional low-rank approximation

In the extended functional tensor train (EFTT) format

IFTT approximation algorithm

O Numerical experiments

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ のへで

EFTT 0●0000 EFTT approximation algorithm 000000000

Numerical experiments

Black-box FTT approximation

For $f : [-1, 1]^d \to \mathbb{R}$, its FTT format reads:

$$f(x_1,\ldots,x_d) \approx \sum_{\alpha_1=1}^{R_1} \ldots, \sum_{\alpha_{d-1}=1}^{R_{d-1}} g_{1,\alpha_1}^{(1)}(x_1) g_{\alpha_1,\alpha_2}^{(2)}(x_2) \cdots g_{\alpha_{d-2},\alpha_{d-1}}^{(d-1)}(x_{d-1}) g_{\alpha_{d-1},1}^{(d)}(x_d).$$

- Goal: given a black box function *f*, construct its FTT approximation using **as few function evaluations as possible**.
- Previous work two different routes:
 - Continuous version of TT-cross [Gorodetsky, Karaman, Marzouk 2019]
 - Ø Multivariate interpolation (basis expansion) + discrete TT

[Haberstich, Nouy, Perrin 2023], [Bigoni, Engsig-Karup, Marzouk 2016], Chebfun [Trefethen et al. from 2004]

• We follow the second route in this work, but with an additional low-rank structure.

FTT via tensorized Chebyshev interpolation + TT

The second route: multivariate interpolation + discrete TT.

• Multivariate **Chebyshev interpolant** \tilde{f} of f is given by

$$f(x_1,\ldots,x_d)\approx \tilde{f}(x_1,\ldots,x_d)=\sum_{i_1=1}^{n_1}\cdots\sum_{i_d=1}^{n_d}\mathcal{A}_{i_1,\ldots,i_d}\mathcal{T}_{i_1}(x_1)\cdots\mathcal{T}_{i_d}(x_d).$$

 ${\mathcal A}$ contains Chebyshev coefficients, computed by

$$\mathcal{A} = \mathcal{T} \times_1 \mathcal{F}^{(1)} \times_2 \mathcal{F}^{(2)} \times_3 \cdots \times_d \mathcal{F}^{(d)}, \text{ for some DCT matrices } \mathcal{F}^{(\ell)} \in \mathbb{R}^{n_\ell \times n_\ell} \\ \mathcal{T}_{i_1,\dots,i_d} = f\left(x_{i_1}^{(1)},\dots,x_{i_d}^{(d)}\right), \ x_k^{(\ell)} = \cos(\pi k/(n_\ell - 1)), \ k = 1,\dots,n_\ell, \ \ell = 1,\dots,d.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

FTT via tensorized Chebyshev interpolation + TT

The second route: multivariate interpolation + discrete TT.

• Multivariate Chebyshev interpolant \tilde{f} of f is given by

$$f(x_1,...,x_d) \approx \tilde{f}(x_1,...,x_d) = \sum_{i_1=1}^{n_1} \cdots \sum_{i_d=1}^{n_d} \mathcal{A}_{i_1,...,i_d} T_{i_1}(x_1) \cdots T_{i_d}(x_d).$$

 ${\mathcal A}$ contains Chebyshev coefficients, computed by

$$\mathcal{A} = \mathcal{T} \times_1 F^{(1)} \times_2 F^{(2)} \times_3 \cdots \times_d F^{(d)}, \text{ for some DCT matrices } F^{(\ell)} \in \mathbb{R}^{n_\ell \times n_\ell} \\ \mathcal{T}_{i_1,\dots,i_d} = f(x_{i_1}^{(1)},\dots,x_{i_d}^{(d)}), \ x_k^{(\ell)} = \cos(\pi k/(n_\ell - 1)), \ k = 1,\dots,n_\ell, \ \ell = 1,\dots,d.$$

• Claim: Replacing \mathcal{T} by a TT approximation $\hat{\mathcal{T}}$ yields an FTT approximation \hat{f} .

FTT via tensorized Chebyshev interpolation + TT

The second route: multivariate interpolation + discrete TT.

• Multivariate Chebyshev interpolant \tilde{f} of f is given by

$$\tilde{f}(x_1,\ldots,x_d) = \sum_{i_1=1}^{n_1}\cdots\sum_{i_d=1}^{n_d}\mathcal{A}_{i_1,\ldots,i_d}\mathcal{T}_{i_1}(x_1)\cdots\mathcal{T}_{i_d}(x_d), \ \mathcal{A} = \mathcal{T}\times_1\mathcal{F}^{(1)}\times_2\cdots\times_d\mathcal{F}^{(d)}$$

• Claim: Replacing \mathcal{T} by a TT approximation $\hat{\mathcal{T}}$ yields an FTT approximation \hat{f} .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

FTT via tensorized Chebyshev interpolation + TT

The second route: multivariate interpolation + discrete TT.

• Multivariate Chebyshev interpolant \tilde{f} of f is given by

$$\tilde{f}(x_1,\ldots,x_d) = \sum_{i_1=1}^{n_1}\cdots\sum_{i_d=1}^{n_d}\mathcal{A}_{i_1,\ldots,i_d} T_{i_1}(x_1)\cdots T_{i_d}(x_d), \ \mathcal{A} = \mathcal{T} \times_1 F^{(1)} \times_2 \cdots \times_d F^{(d)}$$

• Claim: Replacing \mathcal{T} by a TT approximation $\hat{\mathcal{T}}$ yields an FTT approximation \hat{f} :

$$\begin{aligned} \hat{\mathcal{T}}_{i_{1},\dots,i_{d}} &= \sum_{\alpha_{1}=1}^{R_{1}} \cdots \sum_{\alpha_{d-1}=1}^{R_{d-1}} \mathcal{G}_{1,i_{1},\alpha_{1}}^{(1)} \mathcal{G}_{\alpha_{1},i_{1},\alpha_{2}}^{(2)} \cdots \mathcal{G}_{\alpha_{d-2},i_{d-1},\alpha_{d-1}}^{(d-1)} \mathcal{G}_{\alpha_{d-1},i_{d},1}^{(d)}, \\ &\implies f \approx \hat{f} = \sum_{\alpha_{1}=1}^{R_{1}} \dots, \sum_{\alpha_{d-1}=1}^{R_{d-1}} g_{1,\alpha_{1}}^{(1)}(x_{1}) g_{\alpha_{1},\alpha_{2}}^{(2)}(x_{2}) \cdots g_{\alpha_{d-2},\alpha_{d-1}}^{(d-1)}(x_{d-1}) g_{\alpha_{d-1},1}^{(d)}(x_{d}) \\ &\text{where } g_{\alpha_{\ell-1},\alpha_{\ell}}^{(\ell)}(x_{\ell}) = \sum_{i=1}^{n_{\ell}} \sum_{k=1}^{n_{\ell}} F_{j,k}^{(\ell)} \mathcal{G}_{\alpha_{\ell-1},k,\alpha_{\ell}}^{(\ell)} T_{j}(x_{\ell}) = \sum_{k=1}^{n_{\ell}} \left(\mathcal{G}_{\alpha_{d-1},k}^{(\ell)} + \mathcal{G}_{\alpha_{d-1},k}^{(\ell)} \right) \mathcal{G}_{\alpha_{d-1},k}^{(\ell)} \mathcal{G}_{\alpha_{d-1},k}^{(\ell)} \mathcal{G}_{\alpha_{d-1},k}^{(\ell)} \mathcal{G}_{\alpha_{d-1},k,\alpha_{\ell}}^{(\ell)} \mathcal{G}_{\alpha_{d-1},k}^{(\ell)} \mathcal{G}_{\alpha_{d-1},k}^{($$

FTT via tensorized Chebyshev interpolation + TT

The second route: multivariate interpolation + discrete TT.

• Multivariate Chebyshev interpolant \tilde{f} of f is given by

$$\tilde{f}(x_1,\ldots,x_d) = \sum_{i_1=1}^{n_1}\cdots\sum_{i_d=1}^{n_d}\mathcal{A}_{i_1,\ldots,i_d}T_{i_1}(x_1)\cdots T_{i_d}(x_d), \ \mathcal{A} = \mathcal{T}\times_1 F^{(1)}\times_2\cdots\times_d F^{(d)}$$

- Claim: Replacing $\mathcal T$ by a TT approximation $\hat{\mathcal T}$ yields an FTT approximation \hat{f} .
- Update Goal: Approximate ${\cal T}$ in TT format using as few function evaluations as possible.

EFTT 000●00 EFTT approximation algorithm

Numerical experiments

Black box TT approximation

• New Goal: Approximate \mathcal{T} in TT format using as few function evaluations as possible where

.

$$\mathcal{T}_{i_1,\ldots,i_d} = f(x_{i_1}^{(1)},\ldots,x_{i_d}^{(d)}).$$

EFTT 000●00 EFTT approximation algorithm 000000000

Numerical experiments

Black box TT approximation

• New Goal: Approximate ${\cal T}$ in TT format using as few function evaluations as possible where

• Previous work: based on the Adaptive Cross Approximation (ACA) for matrices.

$$M \approx M(:,\mathcal{J})M(\mathcal{I},\mathcal{J})^{-1}M(\mathcal{I},:) \rightsquigarrow$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ■ - のへ⊙

EFTT 000●00 EFTT approximation algorithm 000000000

Numerical experiments

Black box TT approximation

• New Goal: Approximate ${\cal T}$ in TT format using as few function evaluations as possible where

$$\mathcal{T}_{i_1,\ldots,i_d} = f(x_{i_1}^{(1)},\ldots,x_{i_d}^{(d)}).$$

- Previous work: based on the Adaptive Cross Approximation (ACA) for matrices.
- Many variants of ACA for TT: TT-cross[Oseledets & Tyrtyshnikov 2010], TT-DMRG-cross[Savostyanov & Oseledets 2011], greedy2cross[Savostyanov 2014]
- The best one to our best knowledge, greedy2cross, needs $\mathcal{O}(dnR^2)$ entries of \mathcal{T} .

EFTT 000€00 EFTT approximation algorithm 000000000

Numerical experiments

Black box TT approximation

• New Goal: Approximate ${\cal T}$ in TT format using as few function evaluations as possible where

$$\mathcal{T}_{i_1,\ldots,i_d} = f(x_{i_1}^{(1)},\ldots,x_{i_d}^{(d)}).$$

- Previous work: based on the Adaptive Cross Approximation (ACA) for matrices.
- Many variants of ACA for TT: TT-cross[Oseledets & Tyrtyshnikov 2010], TT-DMRG-cross[Savostyanov & Oseledets 2011], greedy2cross[Savostyanov 2014]
- The best one to our best knowledge, greedy2cross, needs $\mathcal{O}(dnR^2)$ entries of \mathcal{T} .
- $R \ll n$. Can we somehow reduce *n* further?

EFTT approximation algorithm 000000000

Numerical experiments

Black box TT approximation with an additional low-rank structure

• Novel idea: first approximate \mathcal{T} in Tucker format (implicitly):

$$\mathcal{T} \approx \mathcal{C} \times_1 U^{(1)} \times_2 \cdots \times_d U^{(d)},$$

Black box TT approximation with an additional low-rank structure

• Novel idea: first approximate \mathcal{T} in Tucker format (implicitly):

$$\mathcal{T} \approx \mathcal{C} \times_1 U^{(1)} \times_2 \cdots \times_d U^{(d)},$$

• then use greedy2cross to compute the TT approximation of \mathcal{C} .

EFTT 0000●0

Black box TT approximation with an additional low-rank structure

• Novel idea: first approximate \mathcal{T} in Tucker format (implicitly):

$$\mathcal{T} \approx \mathcal{C} \times_1 U^{(1)} \times_2 \cdots \times_d U^{(d)},$$

- then use greedy2cross to compute the TT approximation of \mathcal{C} .
- Applying greedy2cross to C only requires $O(drR^2)$ entries, instead of $O(dnR^2)$ for T.

Black box TT approximation with an additional low-rank structure

- Novel idea: first approximate \mathcal{T} in Tucker format (implicitly).
- \bullet then use greedy2cross to compute the TT approximation of $\mathcal{C}.$
- Applying greedy2cross to C only requires $O(drR^2)$ entries, instead of $O(dnR^2)$ for T.
- Important: $\mathcal C$ must be constructed implicitly.

oduction

Black box TT approximation with an additional low-rank structure

- Novel idea: first approximate \mathcal{T} in Tucker format (implicitly).
- \bullet then use greedy2cross to compute the TT approximation of $\mathcal{C}.$
- Applying greedy2cross to C only requires $O(drR^2)$ entries, instead of $O(dnR^2)$ for T.
- Important: $\mathcal C$ must be constructed **implicitly**.
- Our construction ensures ${\mathcal C}$ to be a **subtensor** of ${\mathcal T}$.

EFTT 000000

EFTT approximation algorithm

Numerical experiments

The extended functional tensor train (EFTT) format

$$f(x_1, \dots, x_d) \approx \hat{f}(x_1, \dots, x_d) = \sum_{i_1=1}^{n_1} \cdots \sum_{i_d=1}^{n_d} \hat{\mathcal{A}}_{i_1, \dots, i_d} T_{i_1}(x_1) \cdots T_{i_d}(x_d)$$
$$\hat{f}(x_1, \dots, x_d) = \sum_{\alpha_1=1}^{R_1} \dots, \sum_{\alpha_{d-1}=1}^{R_{d-1}} g_{1,\alpha_1}^{(1)}(x_1) g_{\alpha_1,\alpha_2}^{(2)}(x_2) \cdots g_{\alpha_{d-2},\alpha_{d-1}}^{(d-1)}(x_{d-1}) g_{\alpha_{d-1},1}^{(d)}(x_d)$$

EFTT 000000

EFTT approximation algorithm 000000000

Numerical experiments

The extended functional tensor train (EFTT) format

$$g_{\alpha_{\ell-1},\alpha_{\ell}}^{(\ell)}(x_{\ell}) = \sum_{k=1}^{n_{\ell}} \left(\mathcal{H}^{(\ell)} \times_2 U^{(\ell)} \times_2 F^{(\ell)} \right)_{\alpha_{\ell-1},k,\alpha_{\ell}} T_k(x_{\ell}), \ g_{\alpha_{\ell-1},\alpha_{\ell}}^{(\ell)}(x_{\ell}) = \sum_{k=1}^{n_{\ell}} \left(\mathcal{G}^{(\ell)} \times_2 F^{(\ell)} \right)_{\alpha_{\ell-1},k,\alpha_{\ell}} T_k(x_{\ell})$$

EFTT 000000 EFTT approximation algorithm •00000000 Numerical experiments

Organization

Inctional low-rank approximation

In the extended functional tensor train (EFTT) format

- IFTT approximation algorithm
- O Numerical experiments

EF I I 000000 EFTT approximation algorithm

Numerical experiments

Step 1: Construct factor matrices $U^{(\ell)}$

• **Q**: What makes $U^{(\ell)}$ a good factor matrix?

000000

EFTT approximation algorithm 00000000

Numerical experiments

Step 1: Construct factor matrices $U^{(\ell)}$

- **Q**: What makes $U^{(\ell)}$ a good factor matrix?
- A: $(\mathsf{HOSVD}_{[De \ Lathauwer, \ De \ Moor, \ Vandewalle \ 2000]}) \implies [U^{(\ell)}, \sim, \sim] = \mathtt{svd}(\mathcal{T}^{\{\ell\}})$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

600000

EFTT approximation algorithm

Numerical experiments

Step 1: Construct factor matrices $U^{(\ell)}$

- **Q**: What makes $U^{(\ell)}$ a good factor matrix?
- A: $(\mathsf{HOSVD}_{[De Lathauwer, De Moor, Vandewalle 2000]}) \implies [U^{(\ell)}, \sim, \sim] = \mathtt{svd}(\mathcal{T}^{\{\ell\}})$
- ACA requires evaluating all entries of $\mathcal{T}^{\{\ell\}}$.

- 1: $\mathcal{I} = \emptyset$, $\mathcal{J} = \emptyset$, A = M
- 2: while true do

3: **if**
$$\max_{(i,j)} |A_{i,j}| \leq \varepsilon$$
 then return \mathcal{I}, \mathcal{J} **end**

4:
$$(i^*, j^*) = \arg \max_{(i,j)} |A_{i,j}|, \mathcal{I} = \mathcal{I} \cup \{i^*\}, \mathcal{J} = \mathcal{J} \cup \{j^*\}$$

5: $A = M - M(:, \mathcal{J})M(\mathcal{I}, \mathcal{J})^{-1}M(\mathcal{I}, :)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへ⊙

EFTT 000000

Step 1: Construct factor matrices $U^{(\ell)}$

- **Q:** What makes $U^{(\ell)}$ a good factor matrix?
- A: $(\mathsf{HOSVD}_{[De Lathauwer, De Moor, Vandewalle 2000]}) \implies [U^{(\ell)}, \sim, \sim] = \mathtt{svd}(\mathcal{T}^{\{\ell\}})$
- ACA requires evaluating all entries of $\mathcal{T}^{\{\ell\}}$.
- We proposed a randomized pivoted ACA to avoid this.

- 1: $\mathcal{I} = \emptyset$, $\mathcal{J} = \emptyset$, A = M
- 2: while true do
- 3: **if** $\max_{(i,j)\in S} |A_{i,j}| \leq \varepsilon$ **then** return \mathcal{I}, \mathcal{J} **end**
- 4: Construct $S \subset \{1, \ldots, n\} \times \{1, \ldots, m\}$ by uniformly sampling s index pairs.

5:
$$(i^*, j^*) = \arg \max_{(i,j) \in \mathbf{S}} |A_{i,j}|, \mathcal{I} = \mathcal{I} \cup \{i^*\}, \mathcal{J} = \mathcal{J} \cup \{j^*\}$$

6: $A = M - M(:,\mathcal{J})M(\mathcal{I},\mathcal{J})^{-1}M(\mathcal{I},:)$

EF I I 000000

Step 1: Construct factor matrices $U^{(\ell)}$

- **Q:** What makes $U^{(\ell)}$ a good factor matrix?
- A: $(\mathsf{HOSVD}_{[\mathsf{De Lathauwer, De Moor, Vandewalle 2000]})} \implies [U^{(\ell)}, \sim, \sim] = \mathtt{svd}(\mathcal{T}^{\{\ell\}})$
- ACA requires evaluating all entries of $\mathcal{T}^{\{\ell\}}$.
- We proposed a randomized pivoted ACA to avoid this.
- Applying RPACA to the mode- ℓ matricization $\mathcal{T}^{\{\ell\}} \in \mathbb{R}^{n_{\ell} \times n_1 \cdots n_{\ell-1} n_{\ell+1} \cdots n_d}$:

$$\mathcal{T}^{\{\ell\}} \approx \underbrace{\mathcal{T}^{\{\ell\}}(:, J_{\ell})}_{U^{(\ell)}} (\mathcal{T}^{\{\ell\}}(I_{\ell}, J_{\ell}))^{-1} \mathcal{T}^{\{\ell\}}(I_{\ell}, :)$$

000000

EFTT approximation algorithm

Numerical experiments

Step 1: Construct factor matrices $U^{(\ell)}$

Applying RPACA to the mode- ℓ matricization $\mathcal{T}^{\{\ell\}} \in \mathbb{R}^{n_{\ell} \times n_1 \cdots n_{\ell-1} n_{\ell+1} \cdots n_d}$:

$$\mathcal{T}^{\{\ell\}} \approx \underbrace{\mathcal{T}^{\{\ell\}}(:, J_{\ell})}_{U^{(\ell)}} (\mathcal{T}^{\{\ell\}}(I_{\ell}, J_{\ell}))^{-1} \mathcal{T}^{\{\ell\}}(I_{\ell}, :)$$

- **Advantages**: 1. Only requires evaluating $\mathcal{O}(dr^3 + dsr^2 + dnr)$ entries of \mathcal{T} .
 - 2. Adaptivity in Tucker rank r_{ℓ} 's naturally (by choosing ACA tol ε).
 - 3. Adaptivity in polynomial degree n_{ℓ} 's by leveraging Chebfun heuristics.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

600000

EFTT approximation algorithm 000000000

Numerical experiments

Step 2: Construct the core tensor C implicitly

• **Q:** Given $U^{(\ell)}$ and \mathcal{T} , what's best \mathcal{C} ?

Step 2: Construct the core tensor \mathcal{C} implicitly

- **Q:** Given $U^{(\ell)}$ and \mathcal{T} , what's best \mathcal{C} ?
- A: (HOSVD_[De Lathauwer, De Moor, Vandewalle 2000]) \implies Orthogonal projection of \mathcal{T} onto span $(U^{(\ell)})$, which requires full evaluation of \mathcal{T} , for $[Q^{(\ell)}, \sim] = \operatorname{qr}(U^{(\ell)}, "econ")$:

$$\mathcal{T} \approx (\underbrace{\mathcal{T} \times_1 Q^{(1)^\top} \times_2 \cdots \times_d Q^{(d)^\top}}_{\mathcal{C}}) \times_1 Q^{(1)} \times_2 \cdots \times_d Q^{(d)}.$$

EF I I 000000

Step 2: Construct the core tensor \mathcal{C} implicitly

• **Q**: Given
$$U^{(\ell)}$$
 and \mathcal{T} , what's best C ?
• **Orth. proj.**: $\mathcal{T} \approx (\underbrace{\mathcal{T} \times_1 Q^{(1)^\top} \times_2 \cdots \times_d Q^{(d)^\top}}_{\mathcal{C}}) \times_1 Q^{(1)} \times_2 \cdots \times_d Q^{(d)}.$
• We propose to use an **oblique projection** $Q^{(\ell)}(\Phi_{l_\ell}^\top Q^{(\ell)})^{-1}\Phi_{l_\ell}^\top$:
 $\mathcal{T} \approx (\underbrace{\mathcal{T} \times_1 \Phi_{l_1}^\top \times_2 \cdots \times_d \Phi_{l_d}^\top}_{\mathcal{C}=\mathcal{T}(l_1,\cdots,l_d)}) \times_1 \underbrace{Q^{(1)}(\Phi_{l_1}^\top Q^{(1)})^{-1}}_{\text{updated } U^{(1)}} \times_2 \cdots \times_d \underbrace{Q^{(d)}(\Phi_{l_d}^\top Q^{(d)})^{-1}}_{\text{updated } U^{(d)}}$

• $\Phi_{I_{\ell}}$ is a sampling matrix s.t. $\Phi_{I_{\ell}}^{\top}Q^{(\ell)} = Q^{(\ell)}(I_{\ell},:).$

EF I I 000000

EFTT approximation algorithm 000000000

Step 2: Construct the core tensor \mathcal{C} implicitly

• Oblique projection $Q^{(\ell)}(\Phi_{I_{\ell}}^{\top}Q^{(\ell)})^{-1}\Phi_{I_{\ell}}^{\top}$:

$$\mathcal{T} \approx (\underbrace{\mathcal{T} \times_1 \Phi_{l_1}^\top \times_2 \cdots \times_d \Phi_{l_d}^\top}_{\mathcal{C} = \mathcal{T}(l_1, \cdots, l_d)}) \times_1 \underbrace{\mathcal{Q}^{(1)}(\Phi_{l_1}^\top \mathcal{Q}^{(1)})^{-1}}_{\text{updated } U^{(1)}} \times_2 \cdots \times_d \underbrace{\mathcal{Q}^{(d)}(\Phi_{l_d}^\top \mathcal{Q}^{(d)})^{-1}}_{\text{updated } U^{(d)}}$$

• $\Phi_{I_{\ell}}$ is a sampling matrix s.t. $\Phi_{I_{\ell}}^{\top}Q^{(\ell)} = Q^{(\ell)}(I_{\ell},:).$

- Error introduced by the oblique projection $\sim \|Q^{(\ell)}(I_{\ell},:)^{-1}\|_2$ can be minimized by selecting I_{ℓ} carefully, e.g., using model order reduction methods like DEIM.
- No evaluation of \mathcal{T} in Step 2.

Step 3: Compute the TT approximation of \mathcal{C}

- We apply greedy2cross to $\mathcal{C} = \mathcal{T}(I_1, \cdots, I_d)$ to obtain the TT format of \mathcal{C} .
- Requires $\mathcal{O}(drR^2)$ entries of \mathcal{T} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

EFTT approximation algorithm summary

- **(**) Define a procedure to evaluate the entries of \mathcal{T} .
- 2 Construct $U^{(\ell)}$ using RPACA.
- **③** Update $U^{(\ell)}$ and define C implicitly by oblique projection.
- **③** Compute the TT approximation of C using greedy2cross.
- **O** Define procedures to evaluate the univariate functions:

$$g_{\alpha_{\ell-1},\alpha_{\ell}}^{(\ell)}(x_{\ell}) = \sum_{j=1}^{n_{\ell}} \left(\mathcal{H}^{(\ell)} \times_2 U^{(\ell)} \times_2 F^{(\ell)} \right)_{\alpha_{\ell-1},j,\alpha_{\ell}} T_j(x_{\ell}).$$

EFTT approximation algorithm summary

- EFTT approximation algorithm:
 - Step 1: Construct $U^{(\ell)}$ using RPACA.
 - Step 2: Update $U^{(\ell)}$ and define C implicitly by oblique projection.
 - Step 3: Compute the TT approximation of C using greedy2cross.
- Needs $\mathcal{O}(\underbrace{dr^3 + dsr^2}_{\text{RPACA}} + \underbrace{dnr}_{\text{evaluating}\hat{U}^{(\ell)}} + \underbrace{drR^2}_{\text{greedy2cross applied to } \mathcal{C}})$ entries of \mathcal{T} .
- Comparing to applying greedy2cross directly to \mathcal{T} : $\mathcal{O}(dnR^2)$.

Organization

EFTT 000000 EFTT approximation algorithm 000000000

Numerical experiments

Inctional low-rank approximation

In the extended functional tensor train (EFTT) format

- IFTT approximation algorithm
- Output State Numerical experiments

・ロト ・日・・日・・日・・ のくの

EFTT approximation algorithm 000000000

Compare with directly applying greedy2cross to $\mathcal T$ for Genz functions:

Compare with directly applying greedy2cross to ${\mathcal T}$ for benchmark functions from science & engineering

Function (d)	Algorithm	Error	# func. evals	$\# \operatorname{dofs}$	$\max_{\ell} n_{\ell}$	$\max_\ell R_\ell$	$\max_{\ell} r_{\ell}$
Piston (7)	EFTT	3.32e-09	203484	74228	100	24	11
	DirectTT	2.93e-09	992566	412603	100	18	
Borehole (8)	EFTT	3.95e-02	14186	3243	100	2	4
	DirectTT	3.95e-02	10042	2318	100	2	
OTL Circuit (6)	EFTT	3.71e-11	16065	3280	100	5	5
	DirectTT	8.49e-12	27764	8300	100	4	
Robot Arm (8)	EFTT	7.00e-02	500591	101847	100	33	33
	DirectTT	6.52e-02	734573	383466	100	34	
Wing Weight (10)	EFTT	3.73e-14	6692	2072	100	2	2
	DirectTT	8.29e-14	10440	3600	100	2	
Friedman (5)	EFTT	4.41e-10	12317	2377	100	4	4
	DirectTT	8.84e-12	14676	3142	100	3	
G & L (6)	EFTT	2.52e-05	3278	1034	100	2	2
	DirectTT	2.52e-05	6651	1800	100	2	
G & P 8D (8)	EFTT	3.08e-11	39724	8138	100	7	7
	DirectTT	2.64e-11	74942	30140	100	5	
D & P Exp (3)	EFTT	1.56e-14	1990	616	100	2	2
	DirectTT	1.55e-14	2087	800	100	2	

Compare with continuous analog of TT-cross (c3py) $_{[Gorodetsky, Karaman, Marzouk 2019]}$ for benchmark functions from science & engineering

Function (d)	Algorithm	Error	# func. evals	$\# \operatorname{dofs}$	$\max_{\ell} n_{\ell}$	$\max_\ell R_\ell$	$\max_{\ell} r_{\ell}$
Piston (7)	EFTT	3.71e-09	174188	69019	33	23	11
	сЗру	3.85e-05	251760	66080	35	24	
Borehole (8)	EFTT	3.95e-02	6552	1116	32	2	4
	сЗру	2.08e-03	14346	577	70	2	
OTL Circuit (6)	EFTT	7.93e-11	6670	1083	27	5	5
	сЗру	4.07e-08	15674	1782	28	5	
Robot Arm (8)	EFTT	8.12e-02	499954	54760	94	12	27
	с3ру	3.85e-01	2018017	228439	105	20	
Wing Weight (10)	EFTT	2.83e-14	2867	560	24	2	2
	с3ру	2.15e-13	12224	554	19	2	
Friedman (5)	EFTT	2.16e-11	5238	404	19	3	4
	сЗру	8.08e-05	12142	710	15	4	
G & L (6)	EFTT	4.95e-06	1547	356	29	2	2
	с3ру	3.51e-02	13928	374	105	2	
G & P 8D (8)	EFTT	4.77e-11	19527	3902	24	6	7
	с3ру	9.54e-10	27336	5136	21	7	
D & P Exp (3)	EFTT	1.13e-14	2404	646	105	2	2
	сЗру	4.78e-10	12162	336	49	2	

EFTT 000000 EFTT approximation algorithm 000000000

Numerical experiments

Summary

- Paper available at https://arxiv.org/abs/2211.11338
- Code available at https://github.com/bonans/EFTT