

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

A hybrid Chebyshev-Tucker tensor format with applications to multi-particle modelling

Bonan Sun (Max Planck Institute Magdeburg)

GAMM Annual Meeting, April 8, 2024

Based on a joint work with Peter Benner (MPI Magdeburg) Venera Khoromskaia (MPI MiS) Boris Khoromskij (MPI MiS)

Partners:

Organization

1. ChebTuck format introduction

2. Numerical schemes for ChebTuck approximation

3. Applications to multi-particle modelling

- Consider $f: [-1,1]^d \to \mathbb{R}, d=3.$
- Goal: approximate f with a small number of parameters \rightsquigarrow cheap computations with f.

- Consider $f: [-1,1]^d \to \mathbb{R}, d=3.$
- Goal: approximate f with a small number of parameters \rightsquigarrow cheap computations with f.
- **Grid-based methods**: (algebraic) low-rank tensor approximation of function related tensor $\mathbf{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, e.g., Tucker format:

$$\mathbf{F} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)}.$$

- Consider $f: [-1,1]^d \to \mathbb{R}, d=3.$
- Goal: approximate f with a small number of parameters \rightsquigarrow cheap computations with f.
- **Grid-based methods**: (algebraic) low-rank tensor approximation of function related tensor $\mathbf{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, e.g., Tucker format:

$$\mathbf{F} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)}.$$

 \blacksquare e.g., ${\bf F}$ contains the function values:

$$\mathbf{F}_{i_1,i_2,i_3} = f(t_{i_1}^{(1)}, t_{i_2}^{(2)}, t_{i_3}^{(3)}), \ t_{i_\ell}^{(\ell)} = -1 + (i_\ell - 1)h_\ell, \ i_\ell = 1, \cdots, n_\ell,$$

or ${\bf F}$ contains projection of f on some basis functions

$$\mathbf{F}_{i_1,i_2,i_3} = \int_{[-1,1]^3} f(x_1, x_2, x_3) \phi_{i_1}^{(1)}(x_1) \phi_{i_2}^{(2)}(x_2) \phi_{i_3}^{(3)}(x_3) \,\mathrm{d}\, x_1 \,\mathrm{d}\, x_2 \,\mathrm{d}\, x_3.$$

- Consider $f: [-1,1]^d \to \mathbb{R}, d=3.$
- Goal: approximate f with a small number of parameters \rightsquigarrow cheap computations with f.
- **Grid-based methods**: (algebraic) low-rank tensor approximation of function related tensor $\mathbf{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, e.g., Tucker format:

$$\mathbf{F} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)}.$$

• Storage: $\mathcal{O}(dnr + r^d)$, $n = \max\{n_1, n_2, n_3\}$, $r = \max\{r_1, r_2, r_3\}$.

- Consider $f: [-1,1]^d \to \mathbb{R}, d=3.$
- Goal: approximate f with a small number of parameters \rightsquigarrow cheap computations with f.
- **Grid-based methods**: (algebraic) low-rank tensor approximation of function related tensor $\mathbf{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, e.g., Tucker format:

$$\mathbf{F} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)}.$$

- Storage: $\mathcal{O}(dnr + r^d)$, $n = \max\{n_1, n_2, n_3\}$, $r = \max\{r_1, r_2, r_3\}$.
- Disadvantage: *large* n required to achieve high accuracy.

- Consider $f: [-1,1]^d \to \mathbb{R}, d=3.$
- Goal: approximate f with a small number of parameters \rightsquigarrow cheap computations with f.
- **Grid-based methods**: (algebraic) low-rank tensor approximation of function related tensor $\mathbf{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, e.g., Tucker format:

$$\mathbf{F} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)}.$$

- Storage: $\mathcal{O}(dnr + r^d)$, $n = \max\{n_1, n_2, n_3\}$, $r = \max\{r_1, r_2, r_3\}$.
- \blacksquare Disadvantage: large n required to achieve high accuracy.
- Mesh-free methods: functional low-rank tensor approx. ~→ focus on Tucker format.

Consider f : [-1,1]³ → ℝ. Goal: approximate f with a small number of parameters.
 Grid-based methods: (algebraic) low-rank tensor approximation of function related tensor

$$\mathbf{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}, \ \mathbf{F} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)}.$$

Storage: $\mathcal{O}(dnr + r^d)$.

Consider f : [-1,1]³ → ℝ. Goal: approximate f with a small number of parameters.
 Grid-based methods: (algebraic) low-rank tensor approximation of function related tensor

$$\mathbf{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}, \ \mathbf{F} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)}.$$

Storage: $\mathcal{O}(dnr + r^d)$.

■ Mesh-free methods: functional low-rank tensor approx. ~> focus on Tucker format:

Consider f : [-1,1]³ → ℝ. Goal: approximate f with a small number of parameters.
 Grid-based methods: (algebraic) low-rank tensor approximation of function related tensor

$$\mathbf{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}, \ \mathbf{F} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)}.$$

Storage: $\mathcal{O}(dnr + r^d)$.

■ Mesh-free methods: functional low-rank tensor approx. ~> focus on Tucker format:

$$f(x_1, x_2, x_3) \approx \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} \sum_{i_3=1}^{r_3} \beta_{i_1, i_2, i_3} v_{i_1}^{(1)}(x_1) v_{i_2}^{(2)}(x_2) v_{i_3}^{(3)}(x_3)$$

Consider f : [-1,1]³ → ℝ. Goal: approximate f with a small number of parameters.
 Grid-based methods: (algebraic) low-rank tensor approximation of function related tensor

$$\mathbf{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}, \ \mathbf{F} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)}.$$

Storage: $\mathcal{O}(dnr + r^d)$.

■ Mesh-free methods: functional low-rank tensor approx. ~>> focus on Tucker format:

$$f(x_1, x_2, x_3) \approx \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} \sum_{i_3=1}^{r_3} \beta_{i_1, i_2, i_3} v_{i_1}^{(1)}(x_1) v_{i_2}^{(2)}(x_2) v_{i_3}^{(3)}(x_3)$$

■ Various operations can be performed efficiently, e.g., integration:

$$\int_{[-1,1]^3} f(x_1, x_2, x_3) \,\mathrm{d}\,\mathbf{x} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \int_{-1}^1 v_{i_1}^{(1)}(x_1) \,\mathrm{d}\,x_1 \int_{-1}^1 v_{i_2}^{(2)}(x_2) \,\mathrm{d}\,x_2 \int_{-1}^1 v_{i_3}^{(3)}(x_3) \,\mathrm{d}\,x_3$$

Consider f : [-1,1]³ → ℝ. Goal: approximate f with a small number of parameters.
 Grid-based methods: (algebraic) low-rank tensor approximation of function related tensor

$$\mathbf{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}, \ \mathbf{F} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)}.$$

Storage: $\mathcal{O}(dnr + r^d)$.

■ Mesh-free methods: functional low-rank tensor approx. ~>> focus on Tucker format:

$$f(x_1, x_2, x_3) \approx \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} \sum_{i_3=1}^{r_3} \beta_{i_1, i_2, i_3} v_{i_1}^{(1)}(x_1) v_{i_2}^{(2)}(x_2) v_{i_3}^{(3)}(x_3),$$

Proper parameterization of $v_{i_{\ell}}^{(\ell)}(x_{\ell})$

Consider f : [-1,1]³ → ℝ. Goal: approximate f with a small number of parameters.
 Grid-based methods: (algebraic) low-rank tensor approximation of function related tensor

$$\mathbf{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}, \ \mathbf{F} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)}.$$

Storage: $\mathcal{O}(dnr + r^d)$.

■ Mesh-free methods: functional low-rank tensor approx. ~>> focus on Tucker format:

$$f(x_1, x_2, x_3) \approx \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} \sum_{i_3=1}^{r_3} \beta_{i_1, i_2, i_3} v_{i_1}^{(1)}(x_1) v_{i_2}^{(2)}(x_2) v_{i_3}^{(3)}(x_3),$$

Proper parameterization of $v_{i_{\ell}}^{(\ell)}(x_{\ell}) = \sum_{j_{\ell}=1}^{m_{\ell}} V_{j_{\ell},i_{\ell}}^{(\ell)} T_{j_{\ell}-1}(x_{\ell}), \ T_{j_{\ell}}(x) = \cos(j_{\ell} \arccos(x)).$

Consider f : [-1,1]³ → ℝ. Goal: approximate f with a small number of parameters.
 Grid-based methods: (algebraic) low-rank tensor approximation of function related tensor

$$\mathbf{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}, \ \mathbf{F} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)}.$$

Storage: $\mathcal{O}(dnr + r^d)$.

■ Mesh-free methods: functional low-rank tensor approx. ~>> focus on Tucker format:

$$f(x_1, x_2, x_3) \approx \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} \sum_{i_3=1}^{r_3} \beta_{i_1, i_2, i_3} v_{i_1}^{(1)}(x_1) v_{i_2}^{(2)}(x_2) v_{i_3}^{(3)}(x_3),$$

Proper parameterization of v^(ℓ)_{iℓ}(x_ℓ) = ∑^{mℓ}_{jℓ=1} V^(ℓ)_{jℓ,iℓ} T_{jℓ-1}(x_ℓ), T_{jℓ}(x) = cos(j_ℓ arccos(x)).
 Storage: O(dmr + r^d). m ≪ n for the same accuracy as grid-based methods.

Consider f : [-1,1]³ → ℝ. Goal: approximate f with a small number of parameters.
 Grid-based methods: (algebraic) low-rank tensor approximation of function related tensor

$$\mathbf{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}, \ \mathbf{F} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)}.$$

Storage: $\mathcal{O}(dnr + r^d)$.

■ Mesh-free methods: functional low-rank tensor approx. ~>> focus on Tucker format:

$$f(x_1, x_2, x_3) \approx \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} \sum_{i_3=1}^{r_3} \beta_{i_1, i_2, i_3} v_{i_1}^{(1)}(x_1) v_{i_2}^{(2)}(x_2) v_{i_3}^{(3)}(x_3),$$

Proper parameterization of v^(ℓ)_{iℓ}(x_ℓ) = ∑^{mℓ}_{jℓ=1} V^(ℓ)_{jℓ,iℓ} T_{jℓ-1}(x_ℓ), T_{jℓ}(x) = cos(jℓ arccos(x)).
 Storage: O(dmr + r^d). m ≪ n for the same accuracy as grid-based methods.

• We call it **ChebTuck format**. It is also the format Chebfun3 [Hashemi/Trefethen'17] assumes.

Consider f : [-1,1]³ → ℝ. Goal: approximate f with a small number of parameters.
 Grid-based methods: (algebraic) low-rank tensor approximation of function related tensor

$$\mathbf{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}, \ \mathbf{F} \approx \sum_{i_1, i_2, i_3=1}^{r_1, r_2, r_3} \beta_{i_1, i_2, i_3} \mathbf{a}_{i_1}^{(1)} \otimes \mathbf{a}_{i_2}^{(2)} \otimes \mathbf{a}_{i_3}^{(3)}.$$

Storage: $\mathcal{O}(dnr + r^d)$.

■ Mesh-free methods: functional low-rank tensor approx. ~>> focus on Tucker format:

$$f(x_1, x_2, x_3) \approx \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} \sum_{i_3=1}^{r_3} \beta_{i_1, i_2, i_3} v_{i_1}^{(1)}(x_1) v_{i_2}^{(2)}(x_2) v_{i_3}^{(3)}(x_3),$$

Proper parameterization of $v_{i_{\ell}}^{(\ell)}(x_{\ell}) = \sum_{j_{\ell}=1}^{m_{\ell}} V_{j_{\ell},i_{\ell}}^{(\ell)} T_{j_{\ell}-1}(x_{\ell}), \ T_{j_{\ell}}(x) = \cos(j_{\ell} \arccos(x)).$

- Storage: $\mathcal{O}(dmr + r^d)$. $m \ll n$ for the same accuracy as grid-based methods.
- We call it **ChebTuck format**. It is also the format Chebfun3 [Hashemi/Trefethen'17] assumes.
- Goal: given *f*, compute its ChebTuck approximation.

Organization

1. ChebTuck format introduction

2. Numerical schemes for ChebTuck approximation

3. Applications to multi-particle modelling

■ Goal: approximate *f* in ChebTuck format:

$$f(x_1, x_2, x_3) \approx \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} \sum_{i_3=1}^{r_3} \beta_{i_1, i_2, i_3} v_{i_1}^{(1)}(x_1) v_{i_2}^{(2)}(x_2) v_{i_3}^{(3)}(x_3), \ v_{i_\ell}^{(\ell)}(x_\ell) = \sum_{j_\ell=1}^{m_\ell} V_{j_\ell, i_\ell}^{(\ell)} T_{j_\ell-1}(x_\ell).$$

■ Goal: approximate *f* in ChebTuck format:

$$f(x_1, x_2, x_3) \approx \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} \sum_{i_3=1}^{r_3} \beta_{i_1, i_2, i_3} v_{i_1}^{(1)}(x_1) v_{i_2}^{(2)}(x_2) v_{i_3}^{(3)}(x_3), \ v_{i_\ell}^{(\ell)}(x_\ell) = \sum_{j_\ell=1}^{m_\ell} V_{j_\ell, i_\ell}^{(\ell)} T_{j_\ell-1}(x_\ell).$$

Start from multivariate Chebyshev interpolant $\tilde{f}_{\mathbf{m}}$ of f:

$$f(x_1, x_2, x_3) \approx \tilde{f}_{\mathbf{m}}(x_1, x_2, x_3) = \sum_{i_1=1}^{m_1} \sum_{i_2=1}^{m_2} \sum_{i_3=1}^{m_3} \mathbf{C}_{i_1, i_2, i_3} T_{i_1-1}(x_1) T_{i_2-1}(x_2) T_{i_3-1}(x_3),$$

■ Goal: approximate *f* in ChebTuck format:

$$f(x_1, x_2, x_3) \approx \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} \sum_{i_3=1}^{r_3} \beta_{i_1, i_2, i_3} v_{i_1}^{(1)}(x_1) v_{i_2}^{(2)}(x_2) v_{i_3}^{(3)}(x_3), \ v_{i_\ell}^{(\ell)}(x_\ell) = \sum_{j_\ell=1}^{m_\ell} V_{j_\ell, i_\ell}^{(\ell)} T_{j_\ell-1}(x_\ell).$$

Start from multivariate Chebyshev interpolant $\tilde{f}_{\mathbf{m}}$ of f:

$$f(x_1, x_2, x_3) \approx \tilde{f}_{\mathbf{m}}(x_1, x_2, x_3) = \sum_{i_1=1}^{m_1} \sum_{i_2=1}^{m_2} \sum_{i_3=1}^{m_3} \mathbf{C}_{i_1, i_2, i_3} T_{i_1-1}(x_1) T_{i_2-1}(x_2) T_{i_3-1}(x_3),$$

• where $\mathbf{C} \in \mathbb{R}^{m_1 \times m_2 \times m_3}$ contains the Chebyshev coefficients

■ Goal: approximate *f* in ChebTuck format:

$$f(x_1, x_2, x_3) \approx \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} \sum_{i_3=1}^{r_3} \beta_{i_1, i_2, i_3} v_{i_1}^{(1)}(x_1) v_{i_2}^{(2)}(x_2) v_{i_3}^{(3)}(x_3), \ v_{i_\ell}^{(\ell)}(x_\ell) = \sum_{j_\ell=1}^{m_\ell} V_{j_\ell, i_\ell}^{(\ell)} T_{j_\ell-1}(x_\ell).$$

Start from multivariate Chebyshev interpolant $\tilde{f}_{\mathbf{m}}$ of f:

$$f(x_1, x_2, x_3) \approx \tilde{f}_{\mathbf{m}}(x_1, x_2, x_3) = \sum_{i_1=1}^{m_1} \sum_{i_2=1}^{m_2} \sum_{i_3=1}^{m_3} \mathbf{C}_{i_1, i_2, i_3} T_{i_1-1}(x_1) T_{i_2-1}(x_2) T_{i_3-1}(x_3),$$

• where $\mathbf{C} \in \mathbb{R}^{m_1 \times m_2 \times m_3}$ contains the Chebyshev coefficients computed by

$$\mathbf{C} = \mathbf{T} \times_1 W^{(1)} \times_2 W^{(2)} \times_3 W^{(3)} \text{ for some DCT matrices } W^{(\ell)}$$
$$\mathbf{T}_{i_1, i_2, i_3} = f(s_{i_1}^{(1)}, s_{i_2}^{(2)}, s_{i_3}^{(3)}), s_{i_\ell}^{(\ell)} = \cos((i_\ell - 1)\pi/(m_\ell - 1))$$

■ Goal: approximate *f* in ChebTuck format:

$$f(x_1, x_2, x_3) \approx \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} \sum_{i_3=1}^{r_3} \beta_{i_1, i_2, i_3} v_{i_1}^{(1)}(x_1) v_{i_2}^{(2)}(x_2) v_{i_3}^{(3)}(x_3), \ v_{i_\ell}^{(\ell)}(x_\ell) = \sum_{j_\ell=1}^{m_\ell} V_{j_\ell, i_\ell}^{(\ell)} T_{j_\ell-1}(x_\ell).$$

Start from multivariate Chebyshev interpolant $\tilde{f}_{\mathbf{m}}$ of f:

$$f(x_1, x_2, x_3) \approx \tilde{f}_{\mathbf{m}}(x_1, x_2, x_3) = \sum_{i_1=1}^{m_1} \sum_{i_2=1}^{m_2} \sum_{i_3=1}^{m_3} \mathbf{C}_{i_1, i_2, i_3} T_{i_1-1}(x_1) T_{i_2-1}(x_2) T_{i_3-1}(x_3),$$

• where $\mathbf{C} \in \mathbb{R}^{m_1 \times m_2 \times m_3}$ contains the Chebyshev coefficients computed by

$$\mathbf{C} = \mathbf{T} \times_1 W^{(1)} \times_2 W^{(2)} \times_3 W^{(3)} \text{ for some DCT matrices } W^{(\ell)}$$
$$\mathbf{T}_{i_1, i_2, i_3} = f(s_{i_1}^{(1)}, s_{i_2}^{(2)}, s_{i_3}^{(3)}), s_{i_\ell}^{(\ell)} = \cos((i_\ell - 1)\pi/(m_\ell - 1))$$

• Compute the Tucker approximation of C: $\mathbf{C} \approx \hat{\mathbf{C}} = \boldsymbol{\beta} \times_1 V^{(1)} \times_2 V^{(2)} \times_3 V^{(3)}$

■ Goal: approximate *f* in ChebTuck format:

$$f(x_1, x_2, x_3) \approx \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} \sum_{i_3=1}^{r_3} \beta_{i_1, i_2, i_3} v_{i_1}^{(1)}(x_1) v_{i_2}^{(2)}(x_2) v_{i_3}^{(3)}(x_3), \ v_{i_\ell}^{(\ell)}(x_\ell) = \sum_{j_\ell=1}^{m_\ell} V_{j_\ell, i_\ell}^{(\ell)} T_{j_\ell-1}(x_\ell).$$

Start from multivariate Chebyshev interpolant $\tilde{f}_{\mathbf{m}}$ of f:

$$f(x_1, x_2, x_3) \approx \tilde{f}_{\mathbf{m}}(x_1, x_2, x_3) = \sum_{i_1=1}^{m_1} \sum_{i_2=1}^{m_2} \sum_{i_3=1}^{m_3} \mathbf{C}_{i_1, i_2, i_3} T_{i_1-1}(x_1) T_{i_2-1}(x_2) T_{i_3-1}(x_3),$$

• where $\mathbf{C} \in \mathbb{R}^{m_1 imes m_2 imes m_3}$ contains the Chebyshev coefficients computed by

$$\mathbf{C} = \mathbf{T} \times_1 W^{(1)} \times_2 W^{(2)} \times_3 W^{(3)} \text{ for some DCT matrices } W^{(\ell)}$$
$$\mathbf{T}_{i_1, i_2, i_3} = f(s_{i_1}^{(1)}, s_{i_2}^{(2)}, s_{i_3}^{(3)}), s_{i_\ell}^{(\ell)} = \cos((i_\ell - 1)\pi/(m_\ell - 1))$$

• Compute the Tucker approximation of C: $\mathbf{C} \approx \hat{\mathbf{C}} = \boldsymbol{\beta} \times_1 V^{(1)} \times_2 V^{(2)} \times_3 V^{(3)}$

Plugging $\hat{\mathbf{C}}$ in $\tilde{f}_{\mathbf{m}}$ gives the ChebTuck approximation.

Start from multivariate Chebyshev interpolant $\tilde{f}_{\mathbf{m}}$ of f:

$$f(x_1, x_2, x_3) \approx \tilde{f}_{\mathbf{m}}(x_1, x_2, x_3) = \sum_{i_1=1}^{m_1} \sum_{i_2=1}^{m_2} \sum_{i_3=1}^{m_3} \mathbf{C}_{i_1, i_2, i_3} T_{i_1-1}(x_1) T_{i_2-1}(x_2) T_{i_3-1}(x_3),$$

• where $\mathbf{C} \in \mathbb{R}^{m_1 imes m_2 imes m_3}$ contains the Chebyshev coefficients computed by

$$\begin{split} \mathbf{C} &= \mathbf{T} \times_1 W^{(1)} \times_2 W^{(2)} \times_3 W^{(3)} \text{ for some DCT matrices } W^{(\ell)} \\ \mathbf{T}_{i_1, i_2, i_3} &= f(s_{i_1}^{(1)}, s_{i_2}^{(2)}, s_{i_3}^{(3)}), s_{i_\ell}^{(\ell)} = \cos((i_\ell - 1)\pi/(m_\ell - 1)) \end{split}$$

Compute the Tucker approximation of C: C ≈ Ĉ = β ×₁ V⁽¹⁾ ×₂ V⁽²⁾ ×₃ V⁽³⁾
 Plugging Ĉ in f̃_m gives the ChebTuck approximation.

Start from multivariate Chebyshev interpolant $\tilde{f}_{\mathbf{m}}$ of f:

$$f(x_1, x_2, x_3) \approx \tilde{f}_{\mathbf{m}}(x_1, x_2, x_3) = \sum_{i_1=1}^{m_1} \sum_{i_2=1}^{m_2} \sum_{i_3=1}^{m_3} \mathbf{C}_{i_1, i_2, i_3} T_{i_1-1}(x_1) T_{i_2-1}(x_2) T_{i_3-1}(x_3),$$

• where $\mathbf{C} \in \mathbb{R}^{m_1 imes m_2 imes m_3}$ contains the Chebyshev coefficients computed by

$$\begin{split} \mathbf{C} &= \mathbf{T} \times_1 W^{(1)} \times_2 W^{(2)} \times_3 W^{(3)} \text{ for some DCT matrices } W^{(\ell)} \\ \mathbf{T}_{i_1, i_2, i_3} &= f(s_{i_1}^{(1)}, s_{i_2}^{(2)}, s_{i_3}^{(3)}), s_{i_\ell}^{(\ell)} = \cos((i_\ell - 1)\pi/(m_\ell - 1)) \end{split}$$

- Compute the Tucker approximation of C: $\mathbf{C} \approx \hat{\mathbf{C}} = \boldsymbol{\beta} \times_1 V^{(1)} \times_2 V^{(2)} \times_3 V^{(3)}$
- Plugging $\hat{\mathbf{C}}$ in $\tilde{f}_{\mathbf{m}}$ gives the ChebTuck approximation.
- ChebTuck approximation ~→ reduced to Tucker decomposition.

Start from multivariate Chebyshev interpolant $\tilde{f}_{\mathbf{m}}$ of f:

$$f(x_1, x_2, x_3) \approx \tilde{f}_{\mathbf{m}}(x_1, x_2, x_3) = \sum_{i_1=1}^{m_1} \sum_{i_2=1}^{m_2} \sum_{i_3=1}^{m_3} \mathbf{C}_{i_1, i_2, i_3} T_{i_1-1}(x_1) T_{i_2-1}(x_2) T_{i_3-1}(x_3),$$

• where $\mathbf{C} \in \mathbb{R}^{m_1 imes m_2 imes m_3}$ contains the Chebyshev coefficients computed by

 $\mathbf{C} = \mathbf{T} \times_1 W^{(1)} \times_2 W^{(2)} \times_3 W^{(3)}$ for some DCT matrices $W^{(\ell)}$

$$\mathbf{T}_{i_1,i_2,i_3} = f(s_{i_1}^{(1)}, s_{i_2}^{(2)}, s_{i_3}^{(3)}), s_{i_\ell}^{(\ell)} = \cos((i_\ell - 1)\pi/(m_\ell - 1))$$

- Compute the Tucker approximation of C: $\mathbf{C} \approx \hat{\mathbf{C}} = \boldsymbol{\beta} \times_1 V^{(1)} \times_2 V^{(2)} \times_3 V^{(3)}$
- Plugging $\hat{\mathbf{C}}$ in $\tilde{f}_{\mathbf{m}}$ gives the ChebTuck approximation.
- ChebTuck approximation ~→ reduced to Tucker decomposition.
- Many algorithms available: [Hashemi/Trefethen'17] & [Dolgov/Kressner/Stroessner'21] applied vairants of Cross3D [Rakhuba/Oseledets'15] to T.

In many applications, f not given explicitly in the full domain $[-1,1]^3$

- \hfill In many applications, f not given explicitly in the full domain $[-1,1]^3$
- But we only have access to its function values at the uniform grid points:

$$\mathbf{F}_{i_1,i_2,i_3} = f(t_{i_1}^{(1)}, t_{i_2}^{(2)}, t_{i_3}^{(3)}), \ t_{i_\ell}^{(\ell)} = -1 + (i_\ell - 1)h_\ell, \ i_\ell = 1, \cdots, n_\ell.$$

- In many applications, f not given explicitly in the full domain $[-1,1]^3$
- But we only have access to its function values at the uniform grid points:

$$\mathbf{F}_{i_1,i_2,i_3} = f(t_{i_1}^{(1)}, t_{i_2}^{(2)}, t_{i_3}^{(3)}), \ t_{i_\ell}^{(\ell)} = -1 + (i_\ell - 1)h_\ell, \ i_\ell = 1, \cdots, n_\ell.$$

• We consider here **F** is already in CP tensor format¹: $\mathbf{F} = \sum_{k=1}^{R} \xi_k \mathbf{a}_k^{(1)} \otimes \mathbf{a}_k^{(2)} \otimes \mathbf{a}_k^{(3)}$

- \hfill In many applications, f not given explicitly in the full domain $[-1,1]^3$
- But we only have access to its function values at the uniform grid points:

$$\mathbf{F}_{i_1,i_2,i_3} = f(t_{i_1}^{(1)}, t_{i_2}^{(2)}, t_{i_3}^{(3)}), \ t_{i_\ell}^{(\ell)} = -1 + (i_\ell - 1)h_\ell, \ i_\ell = 1, \cdots, n_\ell$$

• We consider here **F** is already in CP tensor format¹: $\mathbf{F} = \sum_{k=1}^{R} \xi_k \mathbf{a}_k^{(1)} \otimes \mathbf{a}_k^{(2)} \otimes \mathbf{a}_k^{(3)}$

Claim: 3D Chebyshev interpolation is not needed — C can be computed in O(d) time.

- In many applications, f not given explicitly in the full domain $[-1,1]^3$
- But we only have access to its function values at the uniform grid points:

$$\mathbf{F}_{i_1,i_2,i_3} = f(t_{i_1}^{(1)}, t_{i_2}^{(2)}, t_{i_3}^{(3)}), \ t_{i_\ell}^{(\ell)} = -1 + (i_\ell - 1)h_\ell, \ i_\ell = 1, \cdots, n_\ell.$$

• We consider here \mathbf{F} is already in CP tensor format¹: $\mathbf{F} = \sum_{k=1}^{R} \xi_k \mathbf{a}_k^{(1)} \otimes \mathbf{a}_k^{(2)} \otimes \mathbf{a}_k^{(3)}$

Claim: 3D Chebyshev interpolation is not needed — C can be computed in $\mathcal{O}(d)$ time. Step 1: Compute the cubic splines $q_k^{(\ell)}$ of data $\mathbf{a}_k^{(\ell)}$ on grid $\{t_{i\ell}^{(\ell)}\}_{i\ell=1}^{n_\ell}$.

- In many applications, f not given explicitly in the full domain $[-1,1]^3$
- But we only have access to its function values at the uniform grid points:

$$\mathbf{F}_{i_1,i_2,i_3} = f(t_{i_1}^{(1)}, t_{i_2}^{(2)}, t_{i_3}^{(3)}), \ t_{i_\ell}^{(\ell)} = -1 + (i_\ell - 1)h_\ell, \ i_\ell = 1, \cdots, n_\ell.$$

• We consider here \mathbf{F} is already in CP tensor format¹: $\mathbf{F} = \sum_{k=1}^{R} \xi_k \mathbf{a}_k^{(1)} \otimes \mathbf{a}_k^{(2)} \otimes \mathbf{a}_k^{(3)}$

Claim: 3D Chebyshev interpolation is not needed — C can be computed in $\mathcal{O}(d)$ time. Step 1: Compute the cubic splines $q_k^{(\ell)}$ of data $\mathbf{a}_k^{(\ell)}$ on grid $\{t_{i_\ell}^{(\ell)}\}_{i_\ell=1}^{n_\ell}$. Step 2: Compute 1D Chebyshev interpolant of $q_k^{(\ell)}$: $g_k^{(\ell)}(x) = \sum_{j=1}^{m_\ell} \mathbf{c}_k^{(\ell)}(j) T_{j-1}(x)$

- \hfill In many applications, f not given explicitly in the full domain $[-1,1]^3$
- But we only have access to its function values at the uniform grid points:

$$\mathbf{F}_{i_1,i_2,i_3} = f(t_{i_1}^{(1)}, t_{i_2}^{(2)}, t_{i_3}^{(3)}), \ t_{i_\ell}^{(\ell)} = -1 + (i_\ell - 1)h_\ell, \ i_\ell = 1, \cdots, n_\ell.$$

• We consider here \mathbf{F} is already in CP tensor format¹: $\mathbf{F} = \sum_{k=1}^{R} \xi_k \mathbf{a}_k^{(1)} \otimes \mathbf{a}_k^{(2)} \otimes \mathbf{a}_k^{(3)}$

Claim: 3D Chebyshev interpolation is not needed — C can be computed in $\mathcal{O}(d)$ time. Step 1: Compute the cubic splines $q_k^{(\ell)}$ of data $\mathbf{a}_k^{(\ell)}$ on grid $\{t_{i_\ell}^{(\ell)}\}_{i_\ell=1}^{n_\ell}$. Step 2: Compute 1D Chebyshev interpolant of $q_k^{(\ell)}$: $g_k^{(\ell)}(x) = \sum_{j=1}^{m_\ell} \mathbf{c}_k^{(\ell)}(j)T_{j-1}(x)$ Step 3: $\mathbf{C} = \sum_{k=1}^R \xi_k \mathbf{c}_k^{(1)} \otimes \mathbf{c}_k^{(2)} \otimes \mathbf{c}_k^{(3)}$

- \hfill In many applications, f not given explicitly in the full domain $[-1,1]^3$
- But we only have access to its function values at the uniform grid points:

$$\mathbf{F}_{i_1,i_2,i_3} = f(t_{i_1}^{(1)}, t_{i_2}^{(2)}, t_{i_3}^{(3)}), \ t_{i_\ell}^{(\ell)} = -1 + (i_\ell - 1)h_\ell, \ i_\ell = 1, \cdots, n_\ell$$

• We consider here \mathbf{F} is already in CP tensor format¹: $\mathbf{F} = \sum_{k=1}^{R} \xi_k \mathbf{a}_k^{(1)} \otimes \mathbf{a}_k^{(2)} \otimes \mathbf{a}_k^{(3)}$

Claim: 3D Chebyshev interpolation is not needed — C can be computed in $\mathcal{O}(d)$ time. Step 1: Compute the cubic splines $q_k^{(\ell)}$ of data $\mathbf{a}_k^{(\ell)}$ on grid $\{t_{i_\ell}^{(\ell)}\}_{i_\ell=1}^{n_\ell}$. Step 2: Compute 1D Chebyshev interpolant of $q_k^{(\ell)}$: $g_k^{(\ell)}(x) = \sum_{j=1}^{m_\ell} \mathbf{c}_k^{(\ell)}(j)T_{j-1}(x)$ Step 3: $\mathbf{C} = \sum_{k=1}^R \xi_k \mathbf{c}_k^{(1)} \otimes \mathbf{c}_k^{(2)} \otimes \mathbf{c}_k^{(3)}$

 \blacksquare CP to Tucker transformation: RHOSVD [Khoromskij/Khoromskaia'09] of $\mathbf{C} \rightsquigarrow$ ChebTuck format.

- \hfill In many applications, f not given explicitly in the full domain $[-1,1]^3$
- But we only have access to its function values at the uniform grid points:

$$\mathbf{F}_{i_1,i_2,i_3} = f(t_{i_1}^{(1)}, t_{i_2}^{(2)}, t_{i_3}^{(3)}), \ t_{i_\ell}^{(\ell)} = -1 + (i_\ell - 1)h_\ell, \ i_\ell = 1, \cdots, n_\ell$$

• We consider here **F** is already in CP tensor format¹: $\mathbf{F} = \sum_{k=1}^{R} \xi_k \mathbf{a}_k^{(1)} \otimes \mathbf{a}_k^{(2)} \otimes \mathbf{a}_k^{(3)}$

Claim: 3D Chebyshev interpolation is not needed — C can be computed in $\mathcal{O}(d)$ time. Step 1: Compute the cubic splines $q_k^{(\ell)}$ of data $\mathbf{a}_k^{(\ell)}$ on grid $\{t_{i_\ell}^{(\ell)}\}_{i_\ell=1}^{n_\ell}$. Step 2: Compute 1D Chebyshev interpolant of $q_k^{(\ell)}$: $g_k^{(\ell)}(x) = \sum_{j=1}^{m_\ell} \mathbf{c}_k^{(\ell)}(j)T_{j-1}(x)$ Step 3: $\mathbf{C} = \sum_{k=1}^R \xi_k \mathbf{c}_k^{(1)} \otimes \mathbf{c}_k^{(2)} \otimes \mathbf{c}_k^{(3)}$

 \blacksquare CP to Tucker transformation: RHOSVD [Khoromskij/Khoromskaia'09] of $\mathbf{C} \rightsquigarrow$ ChebTuck format.

• Approx. error can be bounded by $\delta := \max_{k,\ell} \|q_k^{(\ell)} - g_k^{(\ell)}\|_{\infty} \& \varepsilon := \mathsf{RHOSVD}$ truncation error.

Theorem (Benner, Khoromskaia, Khoromskij, S., 2025, arXiv 2503.01696)

$$\max_{i_1,i_2,i_3} \left| \hat{f}_{\mathbf{m}}(t_{i_1}^{(1)}, t_{i_2}^{(2)}, t_{i_3}^{(3)}) - \mathbf{F}_{i_1,i_2,i_3} \right| \le \|\xi\|_1 e d\delta + \|\xi\| m^{d/2} \varepsilon$$

Remark

•
$$\delta = \max_{k,\ell} \|q_k^{(\ell)} - g_k^{(\ell)}\|_{\infty}$$
, ε is the RHOSVD truncation error.
• $\delta \lesssim e^{-C_1 m}$ for smooth $q_k^{(\ell)}$
• $\varepsilon \lesssim e^{-C_2 r}$ for a class of Green's functions [Hackbusch/Khoromskij'08]

1. ChebTuck format introduction

2. Numerical schemes for ChebTuck approximation

3. Applications to multi-particle modelling

• Calculation of a weighted sum of interaction potential:

$$P(x) = \sum_{v=1}^{N} z_v p(\|x - x_v\|), \quad z_v \in \mathbb{R} \text{ and } x_v, x \in [-1, 1]^d.$$

• Calculation of a weighted sum of interaction potential:

$$P(x) = \sum_{v=1}^{N} z_v p(\|x - x_v\|), \quad z_v \in \mathbb{R} \text{ and } x_v, x \in [-1, 1]^d.$$

• p(||x||): generating kernel, radial symmetric, slowly decaying, singular at x = 0.

Calculation of a weighted sum of interaction potential:

$$P(x) = \sum_{v=1}^{N} z_v p(\|x - x_v\|), \quad z_v \in \mathbb{R} \text{ and } x_v, x \in [-1, 1]^d.$$

p(||x||): generating kernel, radial symmetric, slowly decaying, singular at x = 0.
 E.g.: Newton (Coulomb) 1/||x||, Slater e^{-λ||x||}, and Yukawa e^{-λ||x||}/||x|| potentials.

Calculation of a weighted sum of interaction potential:

$$P(x) = \sum_{v=1}^{N} z_v p(\|x - x_v\|), \quad z_v \in \mathbb{R} \text{ and } x_v, x \in [-1, 1]^d.$$

• p(||x||): generating kernel, radial symmetric, slowly decaying, singular at x = 0.

- E.g.: Newton (Coulomb) 1/||x||, Slater $e^{-\lambda ||x||}$, and Yukawa $e^{-\lambda ||x||}/||x||$ potentials.
- Fact: there exists analytic CP approximation for $p(||x||) \rightsquigarrow$ also for $P(x)^2$.
- Focus on Newton.

Analytic CP approximation for Newton kernel

• $\mathbf{P} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$: projection-collocation tensor of Newton kernel p(x) = 1/||x|| on a $n_1 \times n_2 \times n_3$ 3D uniform grid:

$$p_{\mathbf{i}} := \int_{[-1,1]^3} \frac{\psi_{\mathbf{i}}(x)}{\|x\|} \, \mathrm{d}\, x = \frac{1}{h^3} \int_{t_{i_1-1}^{(1)}}^{t_{i_1}^{(1)}} \int_{t_{i_2-1}^{(2)}}^{t_{i_2}^{(2)}} \int_{t_{i_3-1}^{(3)}}^{t_{i_3}^{(3)}} \frac{1}{\|x\|} \, \mathrm{d}\, x_1 \, \mathrm{d}\, x_2 \, \mathrm{d}\, x_3,$$

$$\mathbf{P} \approx \mathbf{P}_R = \sum_{k=1}^R \mathbf{p}_k^{(1)} \otimes \mathbf{p}_k^{(2)} \otimes \mathbf{p}_k^{(3)}.$$
 Plot of the canonical vectors $\mathbf{p}_k^{(1)}$ along the x-axis:

ChebTuck approximation of the Newton kernel

Algebraic tensor format of Newton: $\mathbf{P} \approx \mathbf{P}_R = \sum_{k=1}^R \mathbf{p}_k^{(1)} \otimes \mathbf{p}_k^{(2)} \otimes \mathbf{p}_k^{(3)}$. Storage: $\mathcal{O}(dnR)$ ChebTuck storage: $\mathcal{O}(dmr + r^3)$ err := $\max_{i_1, i_2} \left| \mathbf{P}_R(i_1, i_2, n/2) - \hat{f}_{\mathbf{m}}(t_{i_1}, t_{i_2}, t_{n/2}) \right| / \max_{i_1, i_2} \left| \mathbf{P}_R(i_1, i_2, n/2) \right|$

n m	129	257	513	1025	2049	4097	8193	16385
256	0.41	0.07	$7.7 \cdot 10^{-3}$	$6.9\cdot 10^{-4}$	$2.0\cdot 10^{-4}$	$8.5\cdot 10^{-6}$	$1.6\cdot 10^{-6}$	$3.5\cdot 10^{-7}$
512	0.71	0.41	0.07	$7.7\cdot10^{-3}$	$6.9\cdot10^{-4}$	$2.0\cdot10^{-4}$	$8.5\cdot10^{-6}$	$1.6 \cdot 10^{-6}$
1024	0.92	0.71	0.41	0.07	$7.7 \cdot 10^{-3}$	$6.9 \cdot 10^{-4}$	$2.0 \cdot 10^{-4}$	$8.5 \cdot 10^{-6}$
2048	1.06	0.92	0.71	0.41	0.07	$7.7 \cdot 10^{-3}$	$6.9 \cdot 10^{-4}$	$2.0 \cdot 10^{-4}$
4096	1.16	1.06	0.92	0.71	0.41	0.07	$7.7 \cdot 10^{-3}$	$6.9\cdot 10^{-4}$

Polynomial approximation does not work for singular functions! ~>> range separation needed.

ChebTuck approximation of the long-range part of Newton kernel

- Algebraic tensor format of Newton: P ≈ P_R = ∑^R_{k=1} p⁽¹⁾_k ⊗ p⁽²⁾_k ⊗ p⁽³⁾_k.
 Range-separation P_R = P_R + P_R³.
- \mathbf{P}_{R_s} : highly localized and sparse.
- \mathbf{P}_{R_l} : well approximated by ChebTuck.

n m n	129	257	513	1025	2049	4097
256	$8.4\cdot 10^{-8}$	$7.4\cdot 10^{-8}$	$7.3\cdot 10^{-8}$	$4.9\cdot 10^{-9}$	$1.6\cdot 10^{-9}$	$1.8\cdot 10^{-10}$
512	$5.2\cdot10^{-8}$	$5.2\cdot10^{-8}$	$4.6 \cdot 10^{-8}$	$4.6 \cdot 10^{-8}$	$3.0 \cdot 10^{-9}$	$9.9\cdot10^{-10}$
1024	$9.4 \cdot 10^{-9}$	$9.4 \cdot 10^{-9}$	$9.4 \cdot 10^{-9}$	$8.7\cdot 10^{-9}$	$8.6 \cdot 10^{-9}$	$5.7 \cdot 10^{-10}$
2048	$3.6 \cdot 10^{-9}$	$1.7 \cdot 10^{-9}$	$1.7 \cdot 10^{-9}$	$1.7 \cdot 10^{-9}$	$1.6 \cdot 10^{-9}$	$1.6 \cdot 10^{-9}$
4096	$1.1 \cdot 10^{-4}$	$7.5 \cdot 10^{-10}$	$7.4 \cdot 10^{-10}$	$7.4 \cdot 10^{-10}$	$7.4 \cdot 10^{-10}$	$7.1 \cdot 10^{-10}$

Good approximation accuracy with $m \ll n!$

³Benner, Khoromskaia, Khoromskij, SISC 40.2 (2018): A1034-A1062.

 $Bonan\ Sun,\ bsun@mpi-magdeburg.mpg.de,\ https://bonans.github.io/$

CP approximation of mutli-particle potential

- $P(x) = \sum_{v=1}^{N} z_v p(||x x_v||)$ is sum of shifted Newton.
- CP format of Newton: $\mathbf{P}_R = \sum_{k=1}^R \mathbf{p}_k^{(1)} \otimes \mathbf{p}_k^{(2)} \otimes \mathbf{p}_k^{(3)}$.
- Let \mathbf{P}_0 be the projection-collocation tensor of P(x).
- It can be shown: \mathbf{P}_0 can be constructed by shifted single Newton $\mathbf{P}_R{}^4$.
- Similar range-separation: $\mathbf{P}_0 = \mathbf{P}_s + \mathbf{P}_l$.
- For a protein-like molecule with N = 500. Plot of canonical vectors of \mathbf{P}_l and $\mathbf{P}_l(:,:,n/2)$.

⁴Khoromskaia, Khoromskij, Comp. Phy. Comm. 185 (2014): 3162-3174.

ChebTuck approximation error for a protein-like molecule

Figure: Left: middle slice $\hat{f}_{\mathbf{m}}(:,:,t_{n/2})$ of ChebTuck format. Middle: error during RHOSVD compression, i.e. $\hat{f}_{\mathbf{m}}(:,:,t_{n/2}) - \tilde{f}_{\mathbf{m}}(:,:,t_{n/2})$. Right: total error $\hat{f}_{\mathbf{m}}(:,:,t_{n/2}) - \mathbf{P}_l(:,:,n/2)$. n = 2048, m = 129.

Theorem (Benner, Khoromskaia, Khoromskij, S., 2025, arXiv 2503.01696)

$$\max_{i_1, i_2, i_3} \left| \hat{f}_{\mathbf{m}}(t_{i_1}^{(1)}, t_{i_2}^{(2)}, t_{i_3}^{(3)}) - \mathbf{F}_{i_1, i_2, i_3} \right| \varepsilon \lesssim \|\xi\|_1 e d e^{-C_1 m} +$$

$$\underbrace{\|\xi\| m^{d/2} \mathrm{e}^{-C_2 r}}_{}$$

Error during RHOSVD approximation

ChebTuck approximation error for lattice-type structure

Figure: Left: the middle slice $\hat{f}_{\mathbf{m}}(:,:,t_{n/2})$ of the ChebTuck format. Middle: the error during RHOSVD compression, i.e. $\hat{f}_{\mathbf{m}}(:,:,t_{n/2}) - \tilde{f}_{\mathbf{m}}(:,:,t_{n/2})$. Right: the total error $\hat{f}_{\mathbf{m}}(:,:,t_{n/2}) - \mathbf{P}_l(:,:,n/2)$.

Theorem (Benner, Khoromskaia, Khoromskij, S., 2025, arXiv 2503.01696)

$$\max_{i_1, i_2, i_3} \left| \hat{f}_{\mathbf{m}}(t_{i_1}^{(1)}, t_{i_2}^{(2)}, t_{i_3}^{(3)}) - \mathbf{F}_{i_1, i_2, i_3} \right| \varepsilon \lesssim \|\xi\|_1 e d e^{-C_1 m} +$$

$$\underbrace{\|\xi\| m^{d/2} \mathrm{e}^{-C_2 r}}_{}$$

Error during RHOSVD approximation

A mesh-free ChebTuck format

- A mesh-free ChebTuck format
- Numerical schemes for computing ChebTuck format, with different input assumptions

- A mesh-free ChebTuck format
- Numerical schemes for computing ChebTuck format, with different input assumptions
- In case of rank-structured tensor approximation of target function discretized on large spacial grid: ChebTuck is cheap to construct, accurate and storage efficient

- A mesh-free ChebTuck format
- Numerical schemes for computing ChebTuck format, with different input assumptions
- In case of rank-structured tensor approximation of target function discretized on large spacial grid: ChebTuck is cheap to construct, accurate and storage efficient
- For more details: A mesh-free hybrid Chebyshev-Tucker tensor format with applications to multi-particle modelling, https://arxiv.org/abs/2503.01696

- A mesh-free ChebTuck format
- Numerical schemes for computing ChebTuck format, with different input assumptions
- In case of rank-structured tensor approximation of target function discretized on large spacial grid: ChebTuck is cheap to construct, accurate and storage efficient
- For more details: A mesh-free hybrid Chebyshev-Tucker tensor format with applications to multi-particle modelling, https://arxiv.org/abs/2503.01696
- See also: Hashemi and Trefethen, 2017. Chebfun in three dimensions.

- A mesh-free ChebTuck format
- Numerical schemes for computing ChebTuck format, with different input assumptions
- In case of rank-structured tensor approximation of target function discretized on large spacial grid: ChebTuck is cheap to construct, accurate and storage efficient
- For more details: A mesh-free hybrid Chebyshev-Tucker tensor format with applications to multi-particle modelling, https://arxiv.org/abs/2503.01696
- See also: Hashemi and Trefethen, 2017. Chebfun in three dimensions.
- See: Strössner, S., and Kressner, 2024. *Approximation in the extended functional tensor train format* for an extension to higher dimensions.

Thank You for Your Attention!