
Bridging continuous and discrete tensor representations of
multivariate functions via QTT

Bonan Sun (Max Planck Institute Magdeburg)

METT XI, Jan 9, 2026

Based on a joint work with
Peter Benner (MPI Magdeburg)

Boris Khoromskij (MPI Magdeburg and MPI MiS Leipzig)

Partners:

Organization

1. Introduction

2. QTT approximation of polynomials

3. Fully discrete format

4. Numerical experiments

5. Conclusion

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 2/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Discrete and continuous tensor formats

Consider f : [−1, 1]D → R, D = 3. Approx. f with a small number of parameters ⇝ cheap comput.
with f .

1. Grid-based methods: discrete Tucker format of function related tensor F (contains, e.g.,
function values on a grid):

F(i1, i2, i3) ≈
R∑

j1=1

R∑

j2=1

R∑

j3=1

βj1,j2,j3u
(1)
j1

(i1)u
(2)
j2

(i2)u
(3)
j3

(i3),u
(ℓ)
jℓ

∈ Rn, F ∈ Rn×n×n.

2. Mesh-free methods: functional Tucker format of f :

f(x1, x2, x3) ≈ fm(x1, x2, x3) :=

R∑

i1=1

R∑

i2=1

R∑

i3=1

βi1,i2,i3v
(1)
i1

(x1)v
(2)
i2

(x2)v
(3)
i3

(x3)
(1)

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 3/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Discrete and continuous tensor formats

Consider f : [−1, 1]D → R, D = 3. Approx. f with a small number of parameters ⇝ cheap comput.
with f .

1. Grid-based methods: discrete Tucker format of function related tensor F (contains, e.g.,
function values on a grid):

F(i1, i2, i3) ≈
R∑

j1=1

R∑

j2=1

R∑

j3=1

βj1,j2,j3u
(1)
j1

(i1)u
(2)
j2

(i2)u
(3)
j3

(i3),u
(ℓ)
jℓ

∈ Rn, F ∈ Rn×n×n.

2. Mesh-free methods: functional Tucker format of f :

f(x1, x2, x3) ≈ fm(x1, x2, x3) :=

R∑

i1=1

R∑

i2=1

R∑

i3=1

βi1,i2,i3v
(1)
i1

(x1)v
(2)
i2

(x2)v
(3)
i3

(x3)

v
(ℓ)
iℓ

(xℓ) =

m∑

jℓ=1

V
(ℓ)
jℓ,iℓ

Tjℓ−1(xℓ), V (ℓ) ∈ Rm×R, Tjℓ(x) = cos(jℓ arccos(x)).

(1)

We call Eq. (1) the Chebyshev-Tucker (ChebTuck) format.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 3/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

ChebTuck to Grid-based tensor

Consider f : [−1, 1]3 → R approximated in ChebTuck format:

f(x1, x2, x3) ≈ fm(x1, x2, x3) =

R∑

i1=1

R∑

i2=1

R∑

i3=1

βi1,i2,i3v
(1)
i1

(x1)v
(2)
i2

(x2)v
(3)
i3

(x3),

with v
(ℓ)
iℓ

(xℓ) =
∑m

jℓ=1 V
(ℓ)
jℓ,iℓ

Tjℓ−1(xℓ), Tjℓ(x) = cos(jℓ arccos(x)). Storage: O(DRm+RD).

A naive approach yields a discrete Tucker:

Fm = β ×1 U1 ×2 U2 ×3 U3, Uℓ(iℓ, jℓ) = v
(ℓ)
jℓ

(t
(ℓ)
iℓ

)

i.e., each column of Uℓ contains the discretization of a Chebyshev poly. v
(ℓ)
jℓ

(xℓ) on the grid t
(ℓ)
iℓ

.

Storage: O(DRn+RD). Additional storage compared to ChebTuck: O(DRn), n ≫ m.

Remedy: store columns of Uℓ as quantized tensor trains (QTT) [Khoromskij ’11].

Known: QTT ranks of polynomials p of degree m are bounded by m+1 [Khoromskij ’11, Oseledets ’13]

(numerically even logm) ⇝ O(DRn) reduced to O(DRm2 log n) (numerically O(DR log2 m logn)).

Fundamental task: approximate a polynomial p in QTT format efficiently.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 4/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

ChebTuck to Grid-based tensor

Consider f : [−1, 1]3 → R approximated in ChebTuck format:

f(x1, x2, x3) ≈ fm(x1, x2, x3) =

R∑

i1=1

R∑

i2=1

R∑

i3=1

βi1,i2,i3v
(1)
i1

(x1)v
(2)
i2

(x2)v
(3)
i3

(x3),

with v
(ℓ)
iℓ

(xℓ) =
∑m

jℓ=1 V
(ℓ)
jℓ,iℓ

Tjℓ−1(xℓ), Tjℓ(x) = cos(jℓ arccos(x)). Storage: O(DRm+RD).

Goal: Transform ChebTuck format to a discrete tensor format on a fine grid n ≫ m:

Fm(i1, i2, i3) := fm(t
(1)
i1

, t
(2)
i2

, t
(3)
i3

), t
(ℓ)
iℓ

= −1 + (iℓ − 1)h, h = 2/(n− 1).

Motivation:

Efficient application of discrete operators (differentiation, integration, convolution).
Offline-online workflows: expensive offline construction of continuous surrogate, fast online
evaluation.
High-resolution discretizations for accurate simulations.

A naive approach yields a discrete Tucker:

Fm = β ×1 U1 ×2 U2 ×3 U3, Uℓ(iℓ, jℓ) = v
(ℓ)
jℓ

(t
(ℓ)
iℓ

)

i.e., each column of Uℓ contains the discretization of a Chebyshev poly. v
(ℓ)
jℓ

(xℓ) on the grid t
(ℓ)
iℓ

.

Storage: O(DRn+RD). Additional storage compared to ChebTuck: O(DRn), n ≫ m.

Remedy: store columns of Uℓ as quantized tensor trains (QTT) [Khoromskij ’11].

Known: QTT ranks of polynomials p of degree m are bounded by m+1 [Khoromskij ’11, Oseledets ’13]

(numerically even logm) ⇝ O(DRn) reduced to O(DRm2 log n) (numerically O(DR log2 m logn)).

Fundamental task: approximate a polynomial p in QTT format efficiently.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 4/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

ChebTuck to Grid-based tensor

Consider f : [−1, 1]3 → R approximated in ChebTuck format:

f(x1, x2, x3) ≈ fm(x1, x2, x3) =

R∑

i1=1

R∑

i2=1

R∑

i3=1

βi1,i2,i3v
(1)
i1

(x1)v
(2)
i2

(x2)v
(3)
i3

(x3),

with v
(ℓ)
iℓ

(xℓ) =
∑m

jℓ=1 V
(ℓ)
jℓ,iℓ

Tjℓ−1(xℓ), Tjℓ(x) = cos(jℓ arccos(x)). Storage: O(DRm+RD).

Goal: Transform ChebTuck format to a discrete tensor format on a fine grid n ≫ m:

Fm(i1, i2, i3) := fm(t
(1)
i1

, t
(2)
i2

, t
(3)
i3

), t
(ℓ)
iℓ

= −1 + (iℓ − 1)h, h = 2/(n− 1).

A naive approach yields a discrete Tucker:

Fm = β ×1 U1 ×2 U2 ×3 U3, Uℓ(iℓ, jℓ) = v
(ℓ)
jℓ

(t
(ℓ)
iℓ

)

i.e., each column of Uℓ contains the discretization of a Chebyshev poly. v
(ℓ)
jℓ

(xℓ) on the grid t
(ℓ)
iℓ

.

Storage: O(DRn+RD). Additional storage compared to ChebTuck: O(DRn), n ≫ m.

Remedy: store columns of Uℓ as quantized tensor trains (QTT) [Khoromskij ’11].

Known: QTT ranks of polynomials p of degree m are bounded by m+1 [Khoromskij ’11, Oseledets ’13]

(numerically even logm) ⇝ O(DRn) reduced to O(DRm2 log n) (numerically O(DR log2 m logn)).

Fundamental task: approximate a polynomial p in QTT format efficiently.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 4/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

ChebTuck to Grid-based tensor

Consider f : [−1, 1]3 → R approximated in ChebTuck format:

f(x1, x2, x3) ≈ fm(x1, x2, x3) =

R∑

i1=1

R∑

i2=1

R∑

i3=1

βi1,i2,i3v
(1)
i1

(x1)v
(2)
i2

(x2)v
(3)
i3

(x3),

with v
(ℓ)
iℓ

(xℓ) =
∑m

jℓ=1 V
(ℓ)
jℓ,iℓ

Tjℓ−1(xℓ), Tjℓ(x) = cos(jℓ arccos(x)). Storage: O(DRm+RD).

Goal: Transform ChebTuck format to a discrete tensor format on a fine grid n ≫ m:

Fm(i1, i2, i3) := fm(t
(1)
i1

, t
(2)
i2

, t
(3)
i3

), t
(ℓ)
iℓ

= −1 + (iℓ − 1)h, h = 2/(n− 1).

A naive approach yields a discrete Tucker:

Fm = β ×1 U1 ×2 U2 ×3 U3, Uℓ(iℓ, jℓ) = v
(ℓ)
jℓ

(t
(ℓ)
iℓ

)

i.e., each column of Uℓ contains the discretization of a Chebyshev poly. v
(ℓ)
jℓ

(xℓ) on the grid t
(ℓ)
iℓ

.

Storage: O(DRn+RD). Additional storage compared to ChebTuck: O(DRn), n ≫ m.

Remedy: store columns of Uℓ as quantized tensor trains (QTT) [Khoromskij ’11].

Known: QTT ranks of polynomials p of degree m are bounded by m+1 [Khoromskij ’11, Oseledets ’13]

(numerically even logm) ⇝ O(DRn) reduced to O(DRm2 log n) (numerically O(DR log2 m logn)).

Fundamental task: approximate a polynomial p in QTT format efficiently.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 4/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

ChebTuck to Grid-based tensor

Consider f : [−1, 1]3 → R approximated in ChebTuck format:

f(x1, x2, x3) ≈ fm(x1, x2, x3) =

R∑

i1=1

R∑

i2=1

R∑

i3=1

βi1,i2,i3v
(1)
i1

(x1)v
(2)
i2

(x2)v
(3)
i3

(x3),

with v
(ℓ)
iℓ

(xℓ) =
∑m

jℓ=1 V
(ℓ)
jℓ,iℓ

Tjℓ−1(xℓ), Tjℓ(x) = cos(jℓ arccos(x)). Storage: O(DRm+RD).

A naive approach yields a discrete Tucker:

Fm = β ×1 U1 ×2 U2 ×3 U3, Uℓ(iℓ, jℓ) = v
(ℓ)
jℓ

(t
(ℓ)
iℓ

)

i.e., each column of Uℓ contains the discretization of a Chebyshev poly. v
(ℓ)
jℓ

(xℓ) on the grid t
(ℓ)
iℓ

.

Storage: O(DRn+RD). Additional storage compared to ChebTuck: O(DRn), n ≫ m.

Remedy: store columns of Uℓ as quantized tensor trains (QTT) [Khoromskij ’11].

Known: QTT ranks of polynomials p of degree m are bounded by m+1 [Khoromskij ’11, Oseledets ’13]

(numerically even logm) ⇝ O(DRn) reduced to O(DRm2 log n) (numerically O(DR log2 m logn)).

Fundamental task: approximate a polynomial p in QTT format efficiently.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 4/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

ChebTuck to Grid-based tensor

Consider f : [−1, 1]3 → R approximated in ChebTuck format:

f(x1, x2, x3) ≈ fm(x1, x2, x3) =

R∑

i1=1

R∑

i2=1

R∑

i3=1

βi1,i2,i3v
(1)
i1

(x1)v
(2)
i2

(x2)v
(3)
i3

(x3),

with v
(ℓ)
iℓ

(xℓ) =
∑m

jℓ=1 V
(ℓ)
jℓ,iℓ

Tjℓ−1(xℓ), Tjℓ(x) = cos(jℓ arccos(x)). Storage: O(DRm+RD).

A naive approach yields a discrete Tucker:

Fm = β ×1 U1 ×2 U2 ×3 U3, Uℓ(iℓ, jℓ) = v
(ℓ)
jℓ

(t
(ℓ)
iℓ

)

i.e., each column of Uℓ contains the discretization of a Chebyshev poly. v
(ℓ)
jℓ

(xℓ) on the grid t
(ℓ)
iℓ

.

Storage: O(DRn+RD). Additional storage compared to ChebTuck: O(DRn), n ≫ m.

Remedy: store columns of Uℓ as quantized tensor trains (QTT) [Khoromskij ’11].

Known: QTT ranks of polynomials p of degree m are bounded by m+1 [Khoromskij ’11, Oseledets ’13]

(numerically even logm) ⇝ O(DRn) reduced to O(DRm2 log n) (numerically O(DR log2 m logn)).

Fundamental task: approximate a polynomial p in QTT format efficiently.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 4/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

From ChebTuck to QTT-Tucker

(A)

f(x1, x2, x3) ≈

R1
x1

R2
x2

R3
x3

(B) R1
n

R2
n

R3
n

(C) R1 r1,0

2

r1,1

2

r1,2

2

· · ·
2

r1,d−1

2

R2 r2,0

2

r2,1

2

r2,2

2

· · ·
2

r2,d−1

2

R3 r3,0

2

r3,1

2

r3,2

2

· · ·
2

r3,d−1

2

Naive Discretization

Storage: O(DnR), n = 2d

Joint QTT Discretization
Storage: O(D(r2 log n+ rR))

Figure: (A) Continuous ChebTuck. (B) Discrete Tucker (O(n) storage). (C) QTT-Tucker-like (O(logn) storage).

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 5/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Organization

1. Introduction

2. QTT approximation of polynomials

3. Fully discrete format

4. Numerical experiments

5. Conclusion

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 6/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

For a polynomial p(x) = p0 + p1x+ · · ·+ pmxm in [−1, 1], discretizing it on uniform grid

{xi := −1 + h/2 + (i− 1)h}ni=1 with h = 2/n and n = 2d yields p = {p(xi)}ni=1 ∈ R2d .

QTT of p is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 7/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

For a polynomial p(x) = p0 + p1x+ · · ·+ pmxm in [−1, 1], discretizing it on uniform grid

{xi := −1 + h/2 + (i− 1)h}ni=1 with h = 2/n and n = 2d yields p = {p(xi)}ni=1 ∈ R2d .

Using the multi-index mapping (i1, · · · , id) 7→ i≤d = 1+(i1− 1)+2 · (i2− 1)+ · · ·+2d−1 · (id− 1)
for iℓ = 1, 2, we can reshape p to a d-dimensional tensor P ∈ R2×···×2:

P(i1, · · · , id) = p(xi≤d
) = p

(
− 1 + h/2 + (i1 − 1)h+ 2 · (i2 − 1)h+ · · ·+ 2d−1 · (id − 1)h

)

QTT of p is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 7/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

For a polynomial p(x) = p0 + p1x+ · · ·+ pmxm in [−1, 1], discretizing it on uniform grid

{xi := −1 + h/2 + (i− 1)h}ni=1 with h = 2/n and n = 2d yields p = {p(xi)}ni=1 ∈ R2d .

Using the multi-index mapping (i1, · · · , id) 7→ i≤d = 1+(i1− 1)+2 · (i2− 1)+ · · ·+2d−1 · (id− 1)
for iℓ = 1, 2, we can reshape p to a d-dimensional tensor P ∈ R2×···×2:

P(i1, . . . , id) = p(xi≤d
) = p

(
−1 + h/2 + (i1 − 1)h︸ ︷︷ ︸

=:x
(1)
i1

+2 · (i2 − 1)h︸ ︷︷ ︸
=:x

(2)
i2

+ · · ·+ 2d−1 · (id − 1)h︸ ︷︷ ︸
=:x

(d)
id

)

= p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

).

QTT of p is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 7/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

For a polynomial p(x) = p0 + p1x+ · · ·+ pmxm in [−1, 1], discretizing it on uniform grid

{xi := −1 + h/2 + (i− 1)h}ni=1 with h = 2/n and n = 2d yields p = {p(xi)}ni=1 ∈ R2d .

Using the multi-index mapping (i1, · · · , id) 7→ i≤d = 1+(i1− 1)+2 · (i2− 1)+ · · ·+2d−1 · (id− 1)
for iℓ = 1, 2, we can reshape p to a d-dimensional tensor P ∈ R2×···×2:

P(i1, . . . , id) = p(xi≤d
) = p

(
−1 + h/2 + (i1 − 1)h︸ ︷︷ ︸

=:x
(1)
i1

+2 · (i2 − 1)h︸ ︷︷ ︸
=:x

(2)
i2

+ · · ·+ 2d−1 · (id − 1)h︸ ︷︷ ︸
=:x

(d)
id

)

= p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

).

QTT of p is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 7/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

For a polynomial p(x) = p0 + p1x+ · · ·+ pmxm in [−1, 1], discretizing it on uniform grid

{xi := −1 + h/2 + (i− 1)h}ni=1 with h = 2/n and n = 2d yields p = {p(xi)}ni=1 ∈ R2d .

Using the multi-index mapping (i1, · · · , id) 7→ i≤d = 1+(i1− 1)+2 · (i2− 1)+ · · ·+2d−1 · (id− 1)
for iℓ = 1, 2, we can reshape p to a d-dimensional tensor P ∈ R2×···×2:

P(i1, . . . , id) = p(xi≤d
) = p

(
−1 + h/2 + (i1 − 1)h︸ ︷︷ ︸

=:x
(1)
i1

+2 · (i2 − 1)h︸ ︷︷ ︸
=:x

(2)
i2

+ · · ·+ 2d−1 · (id − 1)h︸ ︷︷ ︸
=:x

(d)
id

)

= p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

).

QTT of p is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 7/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

For a polynomial p(x) = p0 + p1x+ · · ·+ pmxm in [−1, 1], discretizing it on uniform grid

{xi := −1 + h/2 + (i− 1)h}ni=1 with h = 2/n and n = 2d yields p = {p(xi)}ni=1 ∈ R2d .

QTT of p is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Computational methods for the TT of P

1. Direct method: apply directly the adaptive TT cross, e.g., dmrg cross [Savostyanov/Oseledets ’11].

2. Constructive method: there exists an analytic formula1 for the cores Gℓ(iℓ) ∈ R(m+1)×(m+1).

3. Our novel method: Constructive (thus faster than Method 1), stable and rank adaptive.

1Oseledets, Constructive Approximation 37(1):1–18 (2013)

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 7/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

For a polynomial p(x) = p0 + p1x+ · · ·+ pmxm in [−1, 1], discretizing it on uniform grid

{xi := −1 + h/2 + (i− 1)h}ni=1 with h = 2/n and n = 2d yields p = {p(xi)}ni=1 ∈ R2d .

QTT of p is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Computational methods for the TT of P

1. Direct method: apply directly the adaptive TT cross, e.g., dmrg cross [Savostyanov/Oseledets ’11].

2. Constructive method: there exists an analytic formula1 for the cores Gℓ(iℓ) ∈ R(m+1)×(m+1).

Disadvantages: Method 1 does not exploit the 1D nature of the problem, just views P as a black box tensor.
Method 2 quickly becomes numerically unstable & produces pessimistic TT ranks m+ 1.

3. Our novel method: Constructive (thus faster than Method 1), stable and rank adaptive.

1Oseledets, Constructive Approximation 37(1):1–18 (2013)

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 7/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

For a polynomial p(x) = p0 + p1x+ · · ·+ pmxm in [−1, 1], discretizing it on uniform grid

{xi := −1 + h/2 + (i− 1)h}ni=1 with h = 2/n and n = 2d yields p = {p(xi)}ni=1 ∈ R2d .

QTT of p is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Computational methods for the TT of P

1. Direct method: apply directly the adaptive TT cross, e.g., dmrg cross [Savostyanov/Oseledets ’11].

2. Constructive method: there exists an analytic formula1 for the cores Gℓ(iℓ) ∈ R(m+1)×(m+1).

Disadvantages: Method 1 does not exploit the 1D nature of the problem, just views P as a black box tensor.
Method 2 quickly becomes numerically unstable & produces pessimistic TT ranks m+ 1.

3. Our novel method: Constructive (thus faster than Method 1), stable and rank adaptive.

1Oseledets, Constructive Approximation 37(1):1–18 (2013)

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 7/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

QTT of p(x) = p0 + p1x+ · · ·+ pmxm is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Recall Oseledets’ constructive method

1. Notice p(x+ y) =
∑m

α=0

∑m
β=0 M(α, β)xαyβ with M(α, β) = pα+βC

α
α+β for α+ β ≤ m

otherwise 0, i.e., M is upper anti-triangular.

2. Introduce the notation: X≤k(x) := [1, x, . . . , xk]⊤ ∈ Rk+1, then p(x+ y) = X≤m(x)⊤MX≤m(y).

3. Let x = x
(1)
i1

and y = x
(2)
i2

+ · · ·+ x
(d)
id

, then separate x
(1)
i1

from the rest:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = X≤m(x
(1)
i1

)⊤M
︸ ︷︷ ︸
=G1(i1)∈R1×(m+1)

X≤m(x
(2)
i2

+ · · ·+ x
(d)
id

).

4. Other cores G2(i2), · · · ,Gd(id) are constructed similarly.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 8/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

QTT of p(x) = p0 + p1x+ · · ·+ pmxm is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Recall Oseledets’ constructive method

1. Notice p(x+ y) =
∑m

α=0

∑m
β=0 M(α, β)xαyβ with M(α, β) = pα+βC

α
α+β for α+ β ≤ m

otherwise 0, i.e., M is upper anti-triangular.

2. Introduce the notation: X≤k(x) := [1, x, . . . , xk]⊤ ∈ Rk+1, then p(x+ y) = X≤m(x)⊤MX≤m(y).

3. Let x = x
(1)
i1

and y = x
(2)
i2

+ · · ·+ x
(d)
id

, then separate x
(1)
i1

from the rest:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = X≤m(x
(1)
i1

)⊤M
︸ ︷︷ ︸
=G1(i1)∈R1×(m+1)

X≤m(x
(2)
i2

+ · · ·+ x
(d)
id

).

4. Other cores G2(i2), · · · ,Gd(id) are constructed similarly.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 8/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

QTT of p(x) = p0 + p1x+ · · ·+ pmxm is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Recall Oseledets’ constructive method

1. Notice p(x+ y) =
∑m

α=0

∑m
β=0 M(α, β)xαyβ with M(α, β) = pα+βC

α
α+β for α+ β ≤ m

otherwise 0, i.e., M is upper anti-triangular.

2. Introduce the notation: X≤k(x) := [1, x, . . . , xk]⊤ ∈ Rk+1, then p(x+ y) = X≤m(x)⊤MX≤m(y).

3. Let x = x
(1)
i1

and y = x
(2)
i2

+ · · ·+ x
(d)
id

, then separate x
(1)
i1

from the rest:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = X≤m(x
(1)
i1

)⊤M
︸ ︷︷ ︸
=G1(i1)∈R1×(m+1)

X≤m(x
(2)
i2

+ · · ·+ x
(d)
id

).

4. Other cores G2(i2), · · · ,Gd(id) are constructed similarly.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 8/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

QTT of p(x) = p0 + p1x+ · · ·+ pmxm is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Recall Oseledets’ constructive method

1. Notice p(x+ y) =
∑m

α=0

∑m
β=0 M(α, β)xαyβ with M(α, β) = pα+βC

α
α+β for α+ β ≤ m

otherwise 0, i.e., M is upper anti-triangular.

2. Introduce the notation: X≤k(x) := [1, x, . . . , xk]⊤ ∈ Rk+1, then p(x+ y) = X≤m(x)⊤MX≤m(y).

3. Let x = x
(1)
i1

and y = x
(2)
i2

+ · · ·+ x
(d)
id

, then separate x
(1)
i1

from the rest:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = X≤m(x
(1)
i1

)⊤M
︸ ︷︷ ︸
=G1(i1)∈R1×(m+1)

X≤m(x
(2)
i2

+ · · ·+ x
(d)
id

).

4. G2(i2) is constructed such that X≤m(x
(2)
i2

+ · · ·+ x
(d)
id

) = G2(i2)X≤m(x
(3)
i3

+ · · ·+ x
(d)
id

) holds

=⇒ P(i1, i2, · · · , id) = G1(i1)G2(i2)X≤m(x
(3)
i3

+ · · ·+ x
(d)
id

).

5. Other cores G2(i2), · · · ,Gd(id) are constructed similarly.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 8/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

QTT of p(x) = p0 + p1x+ · · ·+ pmxm is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Recall Oseledets’ constructive method

1. Notice p(x+ y) =
∑m

α=0

∑m
β=0 M(α, β)xαyβ with M(α, β) = pα+βC

α
α+β for α+ β ≤ m

otherwise 0, i.e., M is upper anti-triangular.

2. Introduce the notation: X≤k(x) := [1, x, . . . , xk]⊤ ∈ Rk+1, then p(x+ y) = X≤m(x)⊤MX≤m(y).

3. Let x = x
(1)
i1

and y = x
(2)
i2

+ · · ·+ x
(d)
id

, then separate x
(1)
i1

from the rest:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = X≤m(x
(1)
i1

)⊤M
︸ ︷︷ ︸
=G1(i1)∈R1×(m+1)

X≤m(x
(2)
i2

+ · · ·+ x
(d)
id

).

4. G2(i2) is constructed such that X≤m(x
(2)
i2

+ · · ·+ x
(d)
id

) = G2(i2)X≤m(x
(3)
i3

+ · · ·+ x
(d)
id

) holds

=⇒ P(i1, i2, · · · , id) = G1(i1)G2(i2)X≤m(x
(3)
i3

+ · · ·+ x
(d)
id

).

5. Other cores G3(i3), · · · ,Gd(id) are constructed similarly.

6. Other cores G2(i2), · · · ,Gd(id) are constructed similarly.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 8/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

QTT of p(x) = p0 + p1x+ · · ·+ pmxm is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Recall Oseledets’ constructive method

1. Notice p(x+ y) =
∑m

α=0

∑m
β=0 M(α, β)xαyβ with M(α, β) = pα+βC

α
α+β for α+ β ≤ m

otherwise 0, i.e., M is upper anti-triangular.

2. Introduce the notation: X≤k(x) := [1, x, . . . , xk]⊤ ∈ Rk+1, then p(x+ y) = X≤m(x)⊤MX≤m(y).

3. Let x = x
(1)
i1

and y = x
(2)
i2

+ · · ·+ x
(d)
id

, then separate x
(1)
i1

from the rest:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = X≤m(x
(1)
i1

)⊤M
︸ ︷︷ ︸
=G1(i1)∈R1×(m+1)

X≤m(x
(2)
i2

+ · · ·+ x
(d)
id

).

4. Other cores G2(i2), · · · ,Gd(id) are constructed similarly.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 8/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

QTT of p(x) = p0 + p1x+ · · ·+ pmxm is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Recall Oseledets’ constructive method

1. Notice p(x+ y) =
∑m

α=0

∑m
β=0 M(α, β)xαyβ with M(α, β) = pα+βC

α
α+β for α+ β ≤ m

otherwise 0, i.e., M is upper anti-triangular.

2. Introduce the notation: X≤k(x) := [1, x, . . . , xk]⊤ ∈ Rk+1, then p(x+ y) = X≤m(x)⊤MX≤m(y).

3. Let x = x
(1)
i1

and y = x
(2)
i2

+ · · ·+ x
(d)
id

, then separate x
(1)
i1

from the rest:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = X≤m(x
(1)
i1

)⊤M
︸ ︷︷ ︸
=G1(i1)∈R1×(m+1)

X≤m(x
(2)
i2

+ · · ·+ x
(d)
id

).

4. Other cores G2(i2), · · · ,Gd(id) are constructed similarly.

Disadvantage: Unstable since the cores contain large binomial coefficients & powers e.g. (x
(1)
i1

)α.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 8/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Approximation of a polynomial in QTT format

QTT of p(x) = p0 + p1x+ · · ·+ pmxm is defined as a TT of P:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = P(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id) for i1, . . . , id = 1, 2.

Recall Oseledets’ constructive method

1. Notice p(x+ y) =
∑m

α=0

∑m
β=0 M(α, β)xαyβ with M(α, β) = pα+βC

α
α+β for α+ β ≤ m

otherwise 0, i.e., M is upper anti-triangular.

2. Introduce the notation: X≤k(x) := [1, x, . . . , xk]⊤ ∈ Rk+1, then p(x+ y) = X≤m(x)⊤MX≤m(y).

3. Let x = x
(1)
i1

and y = x
(2)
i2

+ · · ·+ x
(d)
id

, then separate x
(1)
i1

from the rest:

p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = X≤m(x
(1)
i1

)⊤M
︸ ︷︷ ︸
=G1(i1)∈R1×(m+1)

X≤m(x
(2)
i2

+ · · ·+ x
(d)
id

).

4. Other cores G2(i2), · · · ,Gd(id) are constructed similarly.

Disadvantage: Unstable since the cores contain large binomial coefficients & powers e.g. (x
(1)
i1

)α.

Fix: replace xα, yβ by Chebyshev polynomials: p(x+ y) =
∑m

α=0

∑m
β=0 M

cheb
m (α, β)Tα(x)Tβ(y).

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 8/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Direct construction in Chebyshev basis

Fixing idea: Replace monomial expansion

p(x+ y) =

m∑

α=0

m∑

β=0

M(α, β)xαyβ (2)

by Chebyshev expansion

p(x+ y) =

m∑

α=0

m∑

β=0

M cheb
m (α, β)Tα(x)Tβ(y). (3)

Subtle but crucial difference: (2) holds for all x, y ∈ R for fixed coefficients M , but (3) only
holds for x ∈ Ix and y ∈ Iy with some intervals Ix, Iy and the coefficients M cheb

m depend
accordingly on these intervals.

Notation: Scaled Chebyshev polynomials on I = [a, b]:

T I
ℓ (x) := Tℓ ((2x− (a+ b)) /(b− a)) , T I

≤k(x) := [1, T I
1 (x), · · · , T I

k (x)]
⊤ ∈ Rk+1 for x ∈ I = [a, b].

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 9/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Direct construction in Chebyshev basis

Fixing idea: Replace monomial expansion

p(x+ y) =

m∑

α=0

m∑

β=0

M(α, β)xαyβ (2)

by Chebyshev expansion

p(x+ y) =

m∑

α=0

m∑

β=0

M cheb
m (α, β)Tα(x)Tβ(y). (3)

Subtle but crucial difference: (2) holds for all x, y ∈ R for fixed coefficients M , but (3) only
holds for x ∈ Ix and y ∈ Iy with some intervals Ix, Iy and the coefficients M cheb

m depend
accordingly on these intervals.

Notation: Scaled Chebyshev polynomials on I = [a, b]:

T I
ℓ (x) := Tℓ ((2x− (a+ b)) /(b− a)) , T I

≤k(x) := [1, T I
1 (x), · · · , T I

k (x)]
⊤ ∈ Rk+1 for x ∈ I = [a, b].

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 9/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Direct construction in Chebyshev basis

Fixing idea: Replace monomial expansion

p(x+ y) =

m∑

α=0

m∑

β=0

M(α, β)xαyβ (2)

by Chebyshev expansion

p(x+ y) =

m∑

α=0

m∑

β=0

M cheb
m (α, β)Tα(x)Tβ(y). (3)

Subtle but crucial difference: (2) holds for all x, y ∈ R for fixed coefficients M , but (3) only
holds for x ∈ Ix and y ∈ Iy with some intervals Ix, Iy and the coefficients M cheb

m depend
accordingly on these intervals.

Notation: Scaled Chebyshev polynomials on I = [a, b]:

T I
ℓ (x) := Tℓ ((2x− (a+ b)) /(b− a)) , T I

≤k(x) := [1, T I
1 (x), · · · , T I

k (x)]
⊤ ∈ Rk+1 for x ∈ I = [a, b].

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 9/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Rank-adaptive construction in Chebyshev basis (Forward pass)

Key tool: 1D Chebyshev interpolation

For a polynomial p : I → R of degree ≤ m, its Chebyshev expansion is exact:

p(x) =

m∑

ℓ=0

cℓT
I
ℓ (x) = c⊤T I

≤m(x), coefficients c = Wp

where p contains evaluations at Chebyshev points and W is the DCT (inverse) matrix.

1.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 10/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Rank-adaptive construction in Chebyshev basis (Forward pass)

Key tool: 1D Chebyshev interpolation

For a polynomial p : I → R of degree ≤ m, its Chebyshev expansion is exact:

p(x) =

m∑

ℓ=0

cℓT
I
ℓ (x) = c⊤T I

≤m(x), coefficients c = Wp

where p contains evaluations at Chebyshev points and W is the DCT (inverse) matrix.

Let I≥k := [
∑d

ℓ=k x
(ℓ)
1 ,

∑d
ℓ=k x

(ℓ)
2], then we have x

(k)
ik

+ x
(k+1)
ik+1

+ · · ·+ x
(d)
id

∈ I≥k.

1.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 10/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Rank-adaptive construction in Chebyshev basis (Forward pass)

Key tool: 1D Chebyshev interpolation

For a polynomial p : I → R of degree ≤ m, its Chebyshev expansion is exact:

p(x) =

m∑

ℓ=0

cℓT
I
ℓ (x) = c⊤T I

≤m(x), coefficients c = Wp

where p contains evaluations at Chebyshev points and W is the DCT (inverse) matrix.

Let I≥k := [
∑d

ℓ=k x
(ℓ)
1 ,

∑d
ℓ=k x

(ℓ)
2], then we have x

(k)
ik

+ x
(k+1)
ik+1

+ · · ·+ x
(d)
id

∈ I≥k.

1. Let cchebi1
∈ R1×(m+1) be the Chebyshev coefficients of the function I≥2 ∋ x 7→ p(x

(1)
i1

+x):

p(x
(1)
i1

+ x) = cchebi1 T
I≥2

≤m (x) for x ∈ I≥2, i1 = 1, 2,

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 10/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Rank-adaptive construction in Chebyshev basis (Forward pass)

Key tool: 1D Chebyshev interpolation

For a polynomial p : I → R of degree ≤ m, its Chebyshev expansion is exact:

p(x) =

m∑

ℓ=0

cℓT
I
ℓ (x) = c⊤T I

≤m(x), coefficients c = Wp

where p contains evaluations at Chebyshev points and W is the DCT (inverse) matrix.

Let I≥k := [
∑d

ℓ=k x
(ℓ)
1 ,

∑d
ℓ=k x

(ℓ)
2], then we have x

(k)
ik

+ x
(k+1)
ik+1

+ · · ·+ x
(d)
id

∈ I≥k.

1. Let cchebi1
∈ R1×(m+1) be the Chebyshev coefficients of the function I≥2 ∋ x 7→ p(x

(1)
i1

+x):

p(x
(1)
i1

+ x) = cchebi1 T
I≥2

≤m (x) for x ∈ I≥2, i1 = 1, 2, and in particular

P(i1, i2, · · · , id) = p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = cchebi1 T
I≥2

≤m (x
(2)
i2

+ · · ·+ x
(d)
id

)

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 10/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Rank-adaptive construction in Chebyshev basis (Forward pass)

Key tool: 1D Chebyshev interpolation

For a polynomial p : I → R of degree ≤ m, its Chebyshev expansion is exact:

p(x) =

m∑

ℓ=0

cℓT
I
ℓ (x) = c⊤T I

≤m(x), coefficients c = Wp

where p contains evaluations at Chebyshev points and W is the DCT (inverse) matrix.

Let I≥k := [
∑d

ℓ=k x
(ℓ)
1 ,

∑d
ℓ=k x

(ℓ)
2], then we have x

(k)
ik

+ x
(k+1)
ik+1

+ · · ·+ x
(d)
id

∈ I≥k.

1. Let cchebi1
∈ R1×(m+1) be the Chebyshev coefficients of the function I≥2 ∋ x 7→ p(x

(1)
i1

+x):

p(x
(1)
i1

+ x) = cchebi1 T
I≥2

≤m (x) for x ∈ I≥2, i1 = 1, 2, and in particular

P(i1, i2, · · · , id) = p(x
(1)
i1

+ x
(2)
i2

+ · · ·+ x
(d)
id

) = cchebi1 T
I≥2

≤m (x
(2)
i2

+ · · ·+ x
(d)
id

)

The first QTT core can already be taken as G1(i1) = cchebi1
∈ R1×(m+1).

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 10/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Rank-adaptive construction in Chebyshev basis (Forward pass)

1. For cchebi1
∈ R1×(m+1) being the Chebyshev coefficients of I≥2 ∋ x 7→ p(x

(1)
i1

+ x), we have

P(i1, i2, · · · , id) = cchebi1 T
I≥2

≤m (x
(2)
i2

+ · · ·+ x
(d)
id

) (4)

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 11/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Rank-adaptive construction in Chebyshev basis (Forward pass)

1. For cchebi1
∈ R1×(m+1) being the Chebyshev coefficients of I≥2 ∋ x 7→ p(x

(1)
i1

+ x), we have

P(i1, i2, · · · , id) = cchebi1 T
I≥2

≤m (x
(2)
i2

+ · · ·+ x
(d)
id

) (4)

2. We compute a LRA (e.g. SVD) of the Chebyshev coefficients:[
ccheb1

ccheb2

]
≈ U1V1

⊤ =

[
U1,1

U1,2

]
V1

⊤ with U1 ∈ R2×r1 , V1 ∈ R(m+1)×r1 .

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 11/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Rank-adaptive construction in Chebyshev basis (Forward pass)

1. For cchebi1
∈ R1×(m+1) being the Chebyshev coefficients of I≥2 ∋ x 7→ p(x

(1)
i1

+ x), we have

P(i1, i2, · · · , id) = cchebi1 T
I≥2

≤m (x
(2)
i2

+ · · ·+ x
(d)
id

) (4)

2. We compute a LRA (e.g. SVD) of the Chebyshev coefficients:[
ccheb1

ccheb2

]
≈ U1V1

⊤ =

[
U1,1

U1,2

]
V1

⊤ with U1 ∈ R2×r1 , V1 ∈ R(m+1)×r1 .

3. Thus cchebi1
≈ U1,i1V1

⊤. Then Eq. (4) becomes

P(i1, i2, · · · , id) = cchebi1 T
I≥2

≤m (x
(2)
i2

+ · · ·+ x
(d)
id

) ≈ U1,i1V1
⊤T

I≥2

≤m (x
(2)
i2

+ · · ·+ x
(d)
id

)

= U1,i1v
(2)
≤r1

(x
(2)
i2

+ · · ·+ x
(d)
id

)

where the polynomial vector v
(2)
j (y) on the interval I≥2 is defined as

v
(2)
≤r1

(y) := [v
(2)
1 (y), · · · , v(2)r1 (y)]⊤ ∈ Rr1 with v

(2)
j (y) := V1(:, j)

⊤T
I≥2

≤m (y) for j = 1, · · · , r1, y ∈ I≥2.

The first QTT core can thus be taken as G1(i1) = U1,i1 .
Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 11/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Rank-adaptive construction in Chebyshev basis (Forward pass)

3. We obtained from the previous step:

P(i1, i2, · · · , id) ≈ U1,i1v
(2)
≤r1

(x
(2)
i2

+ · · ·+ x
(d)
id

).

4. For the 2nd QTT core, each I≥3 ∋ x 7→ v
(2)
j (x

(2)
i2

+ x) for j = 1, · · · , r1 and i2 = 1, 2 is a
polynomial of degree ≤ m =⇒ has ≤ m+ 1 non-zero Cheb. coeff. denoted by
Ccheb
2,i2

(j, :) ∈ Rm+1:

v
(2)
≤r1

(x
(2)
i2

+ · · ·+ x
(d)
id

) = Ccheb
2,i2 T

I≥3

≤m (x
(3)
i3

+ · · ·+ x
(d)
id

). (5)

We then compute a LRA of[
Ccheb
2,1

Ccheb
2,2

]
≈ U2V2

⊤ =

[
U2,1

U2,2

]
V2

⊤ with U2 ∈ R2r1×r2 , V2 ∈ R(m+1)×r2 . Thus

P(i1, i2, · · · , id) ≈ U1,i1C
cheb
2,i2 T

I≥3

≤m (x
(3)
i3

+ · · ·+ x
(d)
id

) ≈ U1,i1U2,i2V2
⊤T

I≥3

≤m (x
(3)
i3

+ · · ·+ x
(d)
id

)

The second QTT core is therefore G2(i2) = U2,i2 . Other cores are constructed similarly.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 12/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Rank-adaptive construction (Error control)

Backward pass: Perform right-to-left SVD sweep to further compress the ranks.

SVD tolerances in forward and backward passes: ε
(f)
k and ε

(b)
k for k = 1, . . . , d− 1.

We have guaranteed element-wise error control.

Theorem [Benner, Khoromskij, S., in preparation, 2026]

For the QTT approximation of the polynomial p(x) constructed by the rank-adaptive method,
we have

|P− P̂| ≤
√
m+ 1

d−1∑

k=1

ε
(f)
k +

d−1∑

k=1

ε
(b)
k+1

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 13/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Organization

1. Introduction

2. QTT approximation of polynomials

3. Fully discrete format

4. Numerical experiments

5. Conclusion

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 14/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Joint QTT approximation

Consider f : [−1, 1]3 → R approximated in ChebTuck format:

f(x1, x2, x3) ≈ fm(x1, x2, x3) =

R∑

i1=1

R∑

i2=1

R∑

i3=1

βi1,i2,i3v
(1)
i1

(x1)v
(2)
i2

(x2)v
(3)
i3

(x3),

with v
(ℓ)
iℓ

(xℓ) =
∑m

jℓ=1 V
(ℓ)
jℓ,iℓ

Tjℓ−1(xℓ), Tjℓ(x) = cos(jℓ arccos(x)). Storage: O(DmR+RD).

In ChebTuck, we have multiple polynomials v
(ℓ)
iℓ

(xℓ) for iℓ = 1, . . . , R in each dimension ℓ.

Approximating each separately is inefficient.

Joint QTT approximation:

Treat polynomial index as an additional mode.
First core G1 becomes a 3D tensor (or last core).
Subsequent cores are shared among all polynomials.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 15/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Joint QTT approximation (Illustration)

(A)

Storage

O(dqr2 ×N) N×

2 2 2 2 2

ri,1 ri,2 · · · ri,d−1

(B)

O
(
dq(r2Joint +Nr1)

)

2 2 2 2 2

N
r1 r2 · · · rd−1

(C)

O
(
dq(r2Joint +Nr̃1)

)

N 2 2 2 2 2

r̃1 r1 r2 · · · rd−1

SVD

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 16/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

The fully discrete QTT-Tucker-like format

Combining ChebTuck

f(x1, x2, x3) ≈
R∑

i1=1

R∑

i2=1

R∑

i3=1

βi1,i2,i3v
(1)
i1

(x1)v
(2)
i2

(x2)v
(3)
i3

(x3),

with Joint QTT:

F(i1, i2, i3) ≈ β ×1 U
(1)(i1)×2 U

(2)(i2)×3 U
(3)(i3).

(A)

f(x1, x2, x3) ≈

R1
x1

R2
x2

R3
x3

(B) R1 r1,0

2

r1,1

2

· · ·
2

r1,d−1

2

R2 r2,0

2

r2,1

2

· · ·
2

r2,d−1

2

R3 r3,0

2

r3,1

2

· · ·
2

r3,d−1

2

Joint QTT Discret. n = 2d

Storage: O(D(r2 log n+ rR))

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 17/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Organization

1. Introduction

2. QTT approximation of polynomials

3. Fully discrete format

4. Numerical experiments

5. Conclusion

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 18/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Random polynomials in monomial basis

Non-trivial, but practical and not pathological (not too oscillatory) polynomials.

Polynomials of degree m with random coefficients:

p(x) = a0 + a1x+ a2x
2 + · · ·+ amxm.

ak follow the distribution ak ∼ N (be−ak, c · be−ak) for k = 1, . . . , 300.

Decay parameters a ∼ U(0, 0.1) and b ∼ U(0, 10).

Relative noise level c = 0.1.

Discretization on uniform grid with n = 220 points (20 dimensional QTT tensor).

Tolerances of all SVDs in our method are set to 10−12.

dmrg cross tolerance is set to 10−12.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 19/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Random polynomials in monomial basis

50 100 150 200 250 300
10−14

10−12

10−10

10−8

10−6

10−4

dmrg cross Constructive (mono) Constructive Low Rank

ℓ ∞
ap
pr
ox
.
er
ro
r

polynomial degree m

Figure: TTCross vs. Constructive (mono) vs. Constructive Low Rank.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 19/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Random polynomials in monomial basis

50 100 150 200 250 300

2

4

6

8

dmrg cross Constructive (mono) Constructive Low Rank

av
g.

ra
n
k
r̄

polynomial degree m

Figure: TTCross vs. Constructive (mono) vs. Constructive Low Rank.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 19/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Random polynomials in monomial basis

50 100 150 200 250 300
0

0.5

1

1.5

dmrg cross Constructive (mono) Constructive Low Rank

ru
n
ti
m
e
(1
0−

1
s)

polynomial degree m

Figure: TTCross vs. Constructive (mono) vs. Constructive Low Rank.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 19/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Random polynomials in Chebyshev basis

50 100 150 200 250 300
10−14

10−12

10−10

10−8

dmrg cross Constructive Low Rank

ℓ ∞
ap
pr
ox
.
er
ro
r

polynomial degree m

Figure: TTCross vs. Constructive Low Rank.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 20/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Random polynomials in Chebyshev basis

50 100 150 200 250 300

4

8

12

dmrg cross Constructive Low Rank

av
g.

ra
n
k
r̄

polynomial degree m

Figure: TTCross vs. Constructive Low Rank.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 20/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Random polynomials in Chebyshev basis

50 100 150 200 250 300
0

1

2

3

4

dmrg cross Constructive Low Rank

ru
n
ti
m
e
(1
0−

1
s)

polynomial degree m

Figure: TTCross vs. Constructive Low Rank.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 20/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Joint QTT approximation (Illustration)

(A)

Storage

O(dqr2 ×N) N×

2 2 2 2 2

ri,1 ri,2 · · · ri,d−1

(B)

O
(
dq(r2Joint +Nr1)

)

2 2 2 2 2

N
r1 r2 · · · rd−1

(C)

O
(
dq(r2Joint +Nr̃1)

)

N 2 2 2 2 2

r̃1 r1 r2 · · · rd−1

SVD

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 21/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Test functions

We consider the following 3 test functions f : [−1, 1]3 → R:
1. Biomolecule potential f1: the multi-particle potential of the protein Fasciculin 1

comprising 1,228 atoms2.

2. Runge function f2: the classical 3-dimensional Runge function3 given by

f2(x, y, z) =
1

1 + 25(x2 + y2 + z2)
. (6)

3. Wagon function f3: the SIAM 100-Dollar, 100-Digit Challenge function4 defined by

f3(x, y, z) = esin(50x) + sin(60ey) sin(60z) + sin(70 sin(x)) cos(10z)

+ sin(sin(80y))− sin(10(x+ z)) +
x2 + y2 + z2

4
.

(7)

2M.H. Le Du, P. Marchot, P.E. Bougis, and J.C. Fontecilla-Camps, J. Biol. Chem., 267:22122–30, 1992.
3B. Hashemi and L. N. Trefethen, SIAM J. Sci. Comput., 39(5):C341–C363, 2017.
4Folkmar Bornemann, Dirk Laurie, Stan Wagon, and Jörg Waldvogel. SIAM, 2004.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 22/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

The fully discrete QTT-Tucker-like format

Combining ChebTuck

f(x1, x2, x3) ≈
R∑

i1=1

R∑

i2=1

R∑

i3=1

βi1,i2,i3v
(1)
i1

(x1)v
(2)
i2

(x2)v
(3)
i3

(x3),

where v
(ℓ)
iℓ

(xℓ) =
∑m

jℓ=1 V
(ℓ)
jℓ,iℓ

Tjℓ−1(xℓ), Tjℓ(x) = cos(jℓ arccos(x)) with Joint QTT:

F(i1, i2, i3) ≈ β ×1 U
(1)(i1)×2 U

(2)(i2)×3 U
(3)(i3).

(A)

f(x1, x2, x3) ≈

R1
x1

R2
x2

R3
x3

(B) R1 r1,0

2

r1,1

2

· · ·
2

r1,d−1

2

R2 r2,0

2

r2,1

2

· · ·
2

r2,d−1

2

R3 r3,0

2

r3,1

2

· · ·
2

r3,d−1

2

Joint QTT Discret. n = 2d

Storage: O(D(r2 log n+ rR))

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 23/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

The fully discrete QTT-Tucker-like format

Combining ChebTuck

f(x1, x2, x3) ≈
R∑

i1=1

R∑

i2=1

R∑

i3=1

βi1,i2,i3v
(1)
i1

(x1)v
(2)
i2

(x2)v
(3)
i3

(x3),

where v
(ℓ)
iℓ

(xℓ) =
∑m

jℓ=1 V
(ℓ)
jℓ,iℓ

Tjℓ−1(xℓ), Tjℓ(x) = cos(jℓ arccos(x)) with Joint QTT:

F(i1, i2, i3) ≈ β ×1 U
(1)(i1)×2 U

(2)(i2)×3 U
(3)(i3).

Function Tucker ranks Polynomial degrees

f1 (32, 28, 32) (129, 129, 129)
f2 (17, 17, 17) (189, 189, 189)
f3 (4, 3, 5) (662, 1052, 129)

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 23/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Joint QTT approximation of multiple polynomials

function method configuration ℓ∞ error storage avg. rank r̄ runtime (10−1 s)

f1

Constructive Low Rank Separate 2.93× 10−10 63,394 7.03 4.1
dmrg cross Separate 1.92× 10−11 96,414 8.68 29.4
Constructive Low Rank Joint 7.88× 10−11 17,198 19.66 0.2
dmrg cross Joint 7.56 7,824 13.06 4.5

f2

Constructive Low Rank Separate 2.92× 10−10 39,594 7.48 3.2
dmrg cross Separate 1.17× 10−10 59,546 9.24 27.0
Constructive Low Rank Joint 1.24× 10−10 4,240 9.76 0.2
dmrg cross Joint 4.45× 10−8 5,275 10.93 4.1

f3

Constructive Low Rank Separate 2.54× 10−8 10,076 7.93 3.9
dmrg cross Separate 7.05× 10−9 14,620 9.56 7.2
Constructive Low Rank Joint 4.99× 10−9 3,820 9.53 0.9
dmrg cross Joint 3.77× 10−8 5,342 11.27 7.5

Table: ChebTuck factors from biomolecule f1, Runge f2, and wagon f3; n = 220.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 24/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Fully discrete QTT–Tucker format

(A) (C) (E)

(B) (D) (F)

Figure: (A), (C), (E): Surfaces reconstructed from the fully discrete QTT-Tucker format for fi(x, y, 0).
(B), (D), (F): Corresponding pointwise errors compared to the continuous tensors.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 25/26

mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

Conclusion

A framework to bridge continuous (functional) and discrete (grid-based) tensor formats via
QTT.

Developed stable and rank-adaptive algorithms for joint QTT approximation of
polynomials.

Numerical experiments demonstrate stability, efficiency, and storage savings.

Outlook: Extend it to general univariate functions and multivariate ridge functions and
more application scenarios.

For more details and reference:

1. P. Benner, B. Khoromskij, B. Sun. Bridging continuous and discrete tensor representations of
multivariate functions using QTT, in preparation, 2026.

2. P. Benner, B. Khoromskij, V. Khoromskaia, B. Sun. A mesh-free hybrid Chebyshev-Tucker
tensor format with applications to multi-particle modelling, arXiv:2505.02319, 2025.

Thank you for your attention!

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 26/26

https://arxiv.org/abs/2503.01696
mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

	Introduction
	QTT approximation of polynomials
	Fully discrete format
	Numerical experiments
	Conclusion

