MAX PLANCK INSTITUTE

FOR DYNAMICS OF COMPLEX
TECHNICAL SYSTEMS
MAGDEBURG

Bridging continuous and discrete tensor representations of
multivariate functions via QTT

Bonan Sun (Max Planck Institute Magdeburg)

METT XI, Jan 9, 2026

Based on a joint work with

gdeburg and MPI‘MiS Leipzig)

Partners:

MAX PLANCK INSTITUTE

FOR MATHEMATICS IN THE SCIENCES



Organization

1. Introduction

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https


mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

“ Discrete and continuous tensor formats

Consider f : [-1,1]” — R, D = 3. Approx. f with a small number of parameters ~ cheap comput.
with f.

1. Grid-based methods: discrete Tucker format of function related tensor F (contains, e.g.,
function values on a grid):

R R R
1 2) /. 3) /- L n nxXnxn
F Zl,’LQ,Z3 Z Z Z i1,j2,53 0 §1) 11)u§2)(12)u§-3)(13),u§z) eR" FeR x|
2. Mesh-free methods: functional Tucker format of f:

R R
f(.’L'l,xg,.’Eg,) fm<l'1,.’112,$3 Z Z Z /611,12,13 zl ) (2)(.’1}2) (3)($3)

11=1 7,2=1 l3=1 (1)
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“ Discrete and continuous tensor formats

Consider f : [-1,1]” — R, D = 3. Approx. f with a small number of parameters ~ cheap comput.
with f.

1. Grid-based methods: discrete Tucker format of function related tensor F (contains, e.g.,
function values on a grid):

F(i1,i2,13) Z Z Z /631,]2,]3 h z1)u(2)(zg)u(3)(23) gf) eR"” F e R™"™*™,

J1=1j2=1j3=1

2. Mesh-free methods: functional Tucker format of f:
R R R

F(w1,32,28) & fon(21,22,33) 1= 3 > D By i ayvl) (@) (w2)0 (w3)

11 112 113 1 (1)

= 3 VT, VO € RIS, T (1) = cos( arccos(s)
Je=1
We call Eq. (1) the Chebyshev-Tucker (ChebTuck) format.
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ChebTuck to Grid-based tensor

m Consider f :[—1,1]®> — R approximated in ChebTuck format:

(@1, 02, 23) & fan (w1, 22, 25) Z Z Zﬁhm v (@1)ol? (22)0) (),

11 122 123 1

with vi(f)(x/g) =30 Vj(fw Yo—1(x0), Tj,(x) = cos(jearccos(z)). Storage: O(DRm + RP).
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¢ ChebTuck to Grid-based tensor

m Consider f :[—1,1]®> — R approximated in ChebTuck format:

f(@1,22,23) B fm(®1, 22, 23) = Z Z Z Bi insiaV; “ )0522)(352)111(3) (z3),

11 122 123 1
with vi(f)(xg) =30 VJ(;:” Yo—1(x0), Tj,(x) = cos(jearccos(z)). Storage: O(DRm + RP).
m Goal: Transform ChebTuck format to a discrete tensor format on a fine grid n > m:

Fun(i1,iz,i3) = fm(t, 620, 60), 4 = <14 (g = D)h, h=2/(n—1).

= Motivation:
m Efficient application of discrete operators (differentiation, integration, convolution).
m Offline-online workflows: expensive offline construction of continuous surrogate, fast online

evaluation.
m High-resolution discretizations for accurate simulations.
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% ChebTuck to Grid-based tensor

m Consider f :[—1,1]®> — R approximated in ChebTuck format:

(@1, 02, 23) & fan (w1, 22, 25) Z Z Zﬁh,zm v (@1)ol? (22)0) (),

11 122 123 1

with vi(f)(xg) =30 VJ(;:” Yo—1(x0), Tj,(x) = cos(jearccos(z)). Storage: O(DRm + RP).

m Goal: Transform ChebTuck format to a discrete tensor format on a fine grid n > m:
Fun(i1,iz,i3) = fm(t, 620, 60), 4 = <14 (g = D)h, h=2/(n—1).
= A naive approach yields a discrete Tucker:
Fm =B x1U1 x2 Uz x3Us,  Uslic, jeo) = U;f)(t@)
i.e., each column of U, contains the discretization of a Chebyshev poly. v( )(xg) on the grid tgf).

m Storage: O(DRn + RP). Additional storage compared to ChebTuck: O(DRn), n > m.
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% ChebTuck to Grid-based tensor

m Consider f :[—1,1]®> — R approximated in ChebTuck format:

(@1, 02, 23) & fan (w1, 22, 25) Z Z Z Biriniavs) (210l ()0l (3),

11 122 123 1

with vi(f)(xg) =30 Vj(fu Yo—1(x0), Tj,(x) = cos(jearccos(z)). Storage: O(DRm + RP).
m Goal: Transform ChebTuck format to a discrete tensor format on a fine grid n > m:

Fun(i1,iz,i3) = fm(t, 620, 60), 4 = <14 (g = D)h, h=2/(n—1).

11 7 71 ) i3

= A naive approach yields a discrete Tucker:
Fi =0 x1 U1 x2Us x3Us,  Uslic, jo) = v} (1)
i.e., each column of U, contains the discretization of a Chebyshev poly. v( )(1:@) on the grid tgf).

m Storage: O(DRn + RP). Additional storage compared to ChebTuck: O(DRn), n > m.

m Remedy: store columns of Uy as quantized tensor trains (QTT) [Khoromskij '11].
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% ChebTuck to Grid-based tensor

m Consider f :[—1,1]®> — R approximated in ChebTuck format:

(@1, 02, 23) & fan (w1, 22, 25) Z Z Z Biriniavs) (210l ()0l (3),

11 122 123 1
i(f)(xg) =30 Vj(fu Yo—1(x0), Tj,(x) = cos(jearccos(z)). Storage: O(DRm + RP).
= A naive approach yields a discrete Tucker:

Fi =0 x1 Uy x2Us x3Us,  Uslic, je) = v} (1)

with v

i.e., each column of U, contains the discretization of a Chebyshev poly. v( )(:z:g) on the grid t(e).

Storage: O(DRn + RP). Additional storage compared to ChebTuck: O(DRn), n > m.

m Remedy: store columns of Uy as quantized tensor trains (QTT) [Khoromskij '11].

m Known: QTT ranks of polynomials p of degree m are bounded by m + 1 [Khoromskij '11, Oseledets '13]
(numerically even logm) ~» O(DRn) reduced to (’)(DRTn2 logn) (numerically O(DRlog? mlogn)).
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% ChebTuck to Grid-based tensor

m Consider f :[—1,1]®> — R approximated in ChebTuck format:

(@1, 02, 23) & fan (w1, 22, 25) Z Z Z Biriniavs) (210l ()0l (3),

11 122 123 1

with vi(f)(xg) =30 Vj(fu Yo—1(x0), Tj,(x) = cos(jearccos(z)). Storage: O(DRm + RP).

= A naive approach yields a discrete Tucker:
Fi =0 x1 Uy x2Us x3Us,  Uslic, je) = v} (1)
i.e., each column of U, contains the discretization of a Chebyshev poly. v( )(:z:g) on the grid t(e).

Storage: O(DRn + RP). Additional storage compared to ChebTuck: O(DRn), n > m.

m Remedy: store columns of Uy as quantized tensor trains (QTT) [Khoromskij '11].

m Known: QTT ranks of polynomials p of degree m are bounded by m + 1 [Khoromskij '11, Oseledets '13]
(numerically even logm) ~» O(DRn) reduced to (’)(DRTn2 logn) (numerically O(DRlog? mlogn)).

m Fundamental task: approximate a polynomial p in QTT format efficiently.
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(A)

f($17I2,$3) ~

(©)

LO_ o (B)

Naive Discretization

Storage: O(DnR), n = 2¢

Joint QTT Discretization
Storage: O(D(r?logn + rR))

2 2 2 2 2

R~ 1o /l\ 711 /l\ T1,2 A\ /l\ T1,d—1 <5
N N N N
2 2 2 2

Ry~ 720 /l\ 2,1 /l\ 72,2 A\ /l\ T2,d—1 <5
N N N N
2 2 2 2

R3 T30 /l\ 73,1 /l\ 3,2 A\ /l\ T3,d—1 <5
N N N N

Figure: (A) Continuous ChebTuck. (B) Discrete Tucker (O(n) storage). (C) QT T-Tucker-like (O(logn) storage).
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Organization

2. QTT approximation of polynomials
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% Approximation of a polynomial in QTT format

m For a polynomial p(z) = pg + p1z + - - + pma™ in [—1,1], discretizing it on uniform grid
{z;:= =1+ h/2+ (i — 1)}, with h = 2/n and n = 2¢ yields p = {p(z;)}7_, € R2".
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% Approximation of a polynomial in QTT format

m For a polynomial p(z) = pg + p1z + - - + pma™ in [—1,1], discretizing it on uniform grid
{z;:= =1+ h/2+ (i — 1)}, with h = 2/n and n = 2¢ yields p = {p(z;)}7_, € R2".

m Using the multi-index mapping (i1, ,iq) = i<q = 1+ (i1 — 1) +2- (ig — 1) +- -+ 2971 (iy — 1)
for iy = 1,2, we can reshape p to a d-dimensional tensor P € R?*"*2:

P(iy,- - ,z'd)=p(a:i§d)zp(—1+h/2+(i1—1)h+2-(z’2—1)h+---+2d—1-(z'd—l)h)
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% Approximation of a polynomial in QTT format

m For a polynomial p(z) = pg + p1z + - - + pma™ in [—1,1], discretizing it on uniform grid
{z;:= =1+ h/2+ (i — 1)}, with h = 2/n and n = 2¢ yields p = {p(z;)}7_, € R2".

m Using the multi-index mapping (i1, ,iq) = i<q = 1+ (i1 — 1) +2- (ig — 1) +- -+ 2971 (iy — 1)
for iy = 1,2, we can reshape p to a d-dimensional tensor P € R?*"*2:

P(ir,....iq) = p(zi_,) :p(—1+h/2+ (iy — Dh+2- (iy — Dh+--- + 2771 (ig — 1)h)
—_———

.1 —..(2) _.(d)
=i =, =,
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% Approximation of a polynomial in QTT format

m For a polynomial p(z) = pg + p1z + - - + pma™ in [—1,1], discretizing it on uniform grid
{z;:= =1+ h/2+ (i — 1)}, with h = 2/n and n = 2¢ yields p = {p(z;)}7_, € R2".

m Using the multi-index mapping (i1, ,iq) = i<q = 1+ (i1 — 1) +2- (ig — 1) +- -+ 2971 (iy — 1)
for iy = 1,2, we can reshape p to a d-dimensional tensor P € R?*"*2:

Pliv, ... iq) :p(xigd) = ( 1+h/24 (i1 —1)h+2-(ia — 1)h+...+2d—1 (ig — 1)h)
N———
:ZZ(.I) :Zl‘<2) ::z(,d)
) iq

1 2 d
=p(x ()+x()+ . +xl(»d)).
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% Approximation of a polynomial in QTT format

m For a polynomial p(z) = pg + p1z + - - + pma™ in [—1,1], discretizing it on uniform grid
{z;:= =1+ h/2+ (i — 1)}, with h = 2/n and n = 2¢ yields p = {p(z;)}7_, € R2".

m Using the multi-index mapping (i1, ,iq) = i<q = 1+ (i1 — 1) +2- (ig — 1) +- -+ 2971 (iy — 1)
for iy = 1,2, we can reshape p to a d-dimensional tensor P € R?*"*2:

Pliv, ... iq) :p(xigd) = ( 1+h/24 (i1 —1)h+2-(ia — 1)h+...+2d—1 (ig — 1)h)
N———
:ZZ(.I) :Zl‘<2) ::z(,d)
) iq

( (1) +x(2) + . +x§:l))'
m QTT of pis defined as a TT of P:

plat) + 2P 4 12 D) = Pliy, ... ia) = Gi(i1)Galiz) - Galia) for ir, ... i = 1,2.

d
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% Approximation of a polynomial in QTT format

m For a polynomial p(z) = pg + p1z + - - + pma™ in [—1,1], discretizing it on uniform grid
{z;:= =1+ h/2+ (i — 1)}, with h = 2/n and n = 2¢ yields p = {p(z;)}7_, € R2".

m QTT of pis defined as a TT of P:

p(l‘g) + 1‘(2) + -+ 1‘55)) = P(i1, R id) = Gl(il)Gg(ig) s Gd(id) foriy,...,ig=1,2.

2

Computational methods for the TT of P

1. Direct method: apply directly the adaptive TT cross, e.g., dmrg_cross [Savostyanov/Oseledets '11].

2. Constructive method: there exists an analytic formula! for the cores G (i,) € R(m+1)x(m+1),

! Oseledets, Constructive Approximation 37(1):1-18 (2013)
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Approximation of a polynomial in QTT format

m For a polynomial p(z) = pg + p1z + -+ + pma™ in [—1,1], discretizing it on uniform grid
{2 = =1+ h/2+ (i — 1)}, with h = 2/n and n = 2¢ yields p = {p(z;)}7_, € R2".
m QTT of pis defined as a TT of P:

pal) + 2P 4 12 D) = Plir, ... ia) = G1(i1)Galis) - - Galig) for in, ... iq = 1,2.

id

Computational methods for the TT of P

1. Direct method: apply directly the adaptive TT cross, e.g., dmrg_cross [Savostyanov/Oseledets '11].

2. Constructive method: there exists an analytic formula! for the cores G(i,) € R(m+1)x(m+1),

Disadvantages: Method 1 does not exploit the 1D nature of the problem, just views P as a black box tensor.
Method 2 quickly becomes numerically unstable & produces pessimistic TT ranks m + 1.

! Oseledets, Constructive Approximation 37(1):1-18 (2013)
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% Approximation of a polynomial in QTT format

m For a polynomial p(z) = pg + p1z + -+ + pma™ in [—1,1], discretizing it on uniform grid
{2 = =1+ h/2+ (i — 1)}, with h = 2/n and n = 2¢ yields p = {p(z;)}7_, € R2".
m QTT of pis defined as a TT of P:

pal) + 2P 4 12 D) = Plir, ... ia) = G1(i1)Galis) - - Galig) for in, ... iq = 1,2.

id

Computational methods for the TT of P

1. Direct method: apply directly the adaptive TT cross, e.g., dmrg_cross [Savostyanov/Oseledets '11].

2. Constructive method: there exists an analytic formula! for the cores G(i,) € R(m+1)x(m+1),

Disadvantages: Method 1 does not exploit the 1D nature of the problem, just views P as a black box tensor.
Method 2 quickly becomes numerically unstable & produces pessimistic TT ranks m + 1.

3. Our novel method: Constructive (thus faster than Method 1), stable and rank adaptive.

! Oseledets, Constructive Approximation 37(1):1-18 (2013)
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” Approximation of a polynomial in QTT format

QTT of p(z) = po + p1x + -+ + pma™ is defined as a TT of P:
( (1)+$(2)—|— +l‘(d)) P(’Ll,...,id):Gl(il)Gg(i2)~'~Gd(id) foriy,...,ig=1,2.

Recall Oseledets’ constructive method

1. Notice p(z +y) = Za 0 2peo M(a, B)z *yP with M(c, 8) = patsCSys for a+ B <m
otherwise 0, i.e., M is upper anti- trlangular.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/
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” Approximation of a polynomial in QTT format

QTT of p(z) = po + p1x + -+ + pma™ is defined as a TT of P:
( (1)+$(2)—|— +l‘(d)) P(’Ll,...,id):Gl(il)Gg(i2)~'~Gd(id) foriy,...,ig=1,2.

Recall Oseledets’ constructive method

1. Notice p(z +y) = Za 0 2 peo M(a, B)z® yP with M(a, 8) = paypCS 4 for a+ 5 <m
otherwise 0, i.e., M is upper anti-triangular.

2. Introduce the notation: X<y (z) :=[1,x,...,2%]T € R¥L, then p(a + y) = X< () "M X< (y).
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” Approximation of a polynomial in QTT format

QTT of p(x) = po + p1x + -+ + pma™ is defined as a TT of P:
( (1)+$(2)—|— +l‘(d)) P(’Ll,...,id):Gl(il)GQ(i2)~'~Gd(id) foriy,...,ig=1,2.

Recall Oseledets’ constructive method

1. Notice p(z +y) = Za 0 2 peo M(a, B)z® yP with M(a, 8) = paypCS 4 for a+ 5 <m
otherwise 0, i.e., M is upper anti-triangular.

. Introduce the notation: X<y (z) :=[1,x,...,2%]T € R¥L, then p(x + y) = X< () ' M X< (y).

B oo a:z(j), then separate xS) from the rest:

3. Letx—:c( ) and y = z;]
p(z;, M4 ;v(2) ~+a:§;l)) = Xgm(acgll))TM Xgm(xg) + +a:§;i)).
—_—————

=G (i1)ERX (m+1)
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” Approximation of a polynomial in QTT format

QTT of p(x) = po + p1x + -+ + pma™ is defined as a TT of P:
pa + 2@ 4 4 2D = P(iy,. . ia) = Gi(ia)Galin) - Galia) for in, ... i = 1,2.

Recall Oseledets constructive method

1. Notice p(z +y) = >0 > 5y M(a, B)x%y” with M(a, B) = pa+sC g forat+p<m
otherwise 0, i.e., M is upper anti-triangular.

2. Introduce the notation: X<y (z) :=[L,2,...,2F]T € RFFL then p(z +y) = X<pm(2) "M X<m(y).

) 4

3. Letxz = a:(l) and y = z;] o SF 33@(:): then separate 55511) from the rest:
pla) + x(2) oo +x§j)) = Xem@NTM Xem(@P + - +2D).
=G (i1)ERLX (m+1)
4. Gy(iz) is constructed such that X<, (v, @44 x(d)) Ga(i2) X<m (T, ® .. —I—xgj)) holds

—> P(ir, b2, ,iq) = G1(i1)Ga(i2) Xem (@D + - + m§j>).
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” Approximation of a polynomial in QTT format

QTT of p(x) = po + p1x + -+ + pma™ is defined as a TT of P:
pa + 2@ 4 4 2D = P(iy,. . ia) = Gi(ia)Galin) - Galia) for in, ... i = 1,2.

Recall Oseledets constructive method

1. Notice p(z +y) = >0 > 5y M(a, B)x%y” with M(a, B) = pa+sC g forat+p<m
otherwise 0, i.e., M is upper anti-triangular.

2. Introduce the notation: X<y (z) :=[L,2,...,2F]T € RFFL then p(z +y) = X<pm(2) "M X<m(y).

) 4

3. Letz = a:(l) and y = z;] o 9 33@(;1): then separate xfj) from the rest:

ple “)+m<2)+-~-+:v§?) = Xem(e))TM Xem(@l]) +- + ).
—_———

_Gl(il)ERlx(m"'l)
4. Gy(iz) is constructed such that X<, (v, @ 4 -—|—x(d)) Ga(i2) X<m (T, ® .. —I—xgj)) holds
= P(i1,i2, - ,iq) = G1(i1) G2 (i2) X< (2; o )+"' :vg;l)).
5. Other cores Gj(i3), -, Ga(iq) are constructed similarly.
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” Approximation of a polynomial in QTT format

QTT of p(x) = po + p1x + -+ + pma™ is defined as a TT of P:
( (1)+$(2)—|— +l‘(d)) P(’Ll,...,id):Gl(il)GQ(i2)~'~Gd(id) foriy,...,ig=1,2.

Recall Oseledets’ constructive method

1. Notice p(z +y) = Za 0 2 peo M(a, B)z® yP with M(a, 8) = paypCS 4 for a+ 5 <m
otherwise 0, i.e., M is upper anti-triangular.
2. Introduce the notation: X<y (z) :=[1,x,...,2%]T € R¥L, then p(a + y) = X< () "M X< (y).

)

3. ILait a2 = :c( ) and Y=z -+ a:z(j), then separate xS) from the rest:

play, +x<2) ~+w§;‘>> = Xam@i) ™M Xem(@) + -+ 2,).
S
=G1(i1)eR1X(M+1)
4. Other cores Ga(iz2), -+, Gy(iq) are constructed similarly.
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” Approximation of a polynomial in QTT format

QTT of p(x) = po + p1x + -+ + pma™ is defined as a TT of P:
( (1)+Z‘(2)—|— +$(d)) P(Zl,...,id):Gl(h)GQ(ig)'”Gd(id) foriy,...,ig=1,2.

Recall Oseledets’ constructive method

1. Notice p(z +y) = >ontg Yo M(a, B)z*y? with M(a, 8) = patsCay g for a+ 5 <m
otherwise 0, i.e., M is upper anti-triangular

2. Introduce the notation: X< (z) := [L,2,...,2¥]T € REFL, then p(x + y) = X<pm(2) T M X< (y).
3. Let z = x(l) and y = 1(2) (d) , then separate z; ) from the rest:

p(z;, 4 x(z) . +x§j)) = Xgm(a:g))TM Xgm(xg) + e —I-a:gf)).
4. Other cores Ga(i2), - -, Gy(iq) are constructed similarly.

Disadvantage: Unstable since the cores contain large binomial coefficients & powers e.g. (z (11))0‘.
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” Approximation of a polynomial in QTT format

QTT of p(x) = po + p1x + -+ + pma™ is defined as a TT of P:
pa) 42?4 42D = Plin,. . ia) = Gi(in)Galia) - Galia) for iv, ... iq = 1,2,

Recall Oseledets constructive method

1. Notice p(z +y) = Ynry Yo M(a, B)z%yP with M(a, 8) = patsCay g for a+ B <m
otherwise 0, i.e., M is upper anti-triangular.

2. Introduce the notation: X<y (z) :=[L,2,...,2F]T € RFFL then p(z +y) = X<pm(2) "M X<m(y).

) 4

3. Letz = a:(l) and y = z;] o 9 33@(:): then separate :US) from the rest:
pla};) +m(2) -+x§;‘)) = Xam(@i) M Xem(a) + -+ ).
=G (i) ERIX (m+1)

4. Other cores Ga(iz),- -+, Gq(iq) are constructed similarly.

Disadvantage: Unstable since the cores contain large binomial coefficients & powers e.g. (mgll))a
Fix: replace 2%, y® by Chebyshev polynomials: p(z + y) = > ZZL:O Mebeb (o, BT (2)Ts(y).
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Direct construction in Chebyshev basis

Fixing idea: Replace monomial expansion

plety) =Y M(a,p)ay’ (2)
a=0 =0
by Chebyshev expansion
plr+y) =Y Y My, 8)Ta(x)Ts(y). (3)
a=0 =0
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Direct construction in Chebyshev basis

Fixing idea: Replace monomial expansion

p(x +y) = Z Z M (e, B)zy”? (2)
a=0 =0
by Chebyshev expansion
plr+y) =Y Y My, 8)Ta(x)Ts(y). (3)
a=0 =0

m Subtle but crucial difference: (2) holds for all z,y € R for fixed coefficients M, but (3) only
holds for z € I, and y € I, with some intervals I, I,, and the coefficients MP depend
accordingly on these intervals.
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Direct construction in Chebyshev basis

Fixing idea: Replace monomial expansion

plety) =Y M(a,p)ay’ (2)
a=0 =0
by Chebyshev expansion
et = ZMChEb o, B)Ta(@)T5(y). 3)

m Subtle but crucial difference: (2) holds for all z,y € R for fixed coefficients M, but (3) only
holds for z € I, and y € I, with some intervals I, I,, and the coefficients MP depend
accordingly on these intervals.

m Notation: Scaled Chebyshev polynomials on I = [a, b]:
Tf(x) =T ((2x — (a+b)) /(b—a)), Ték(x) = [l,T{(m), e ,T,f(x)]T ceRF forx el = [a, b].
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“ Rank-adaptive construction in Chebyshev basis (Forward pass)

Key tool: 1D Chebyshev interpolation

For a polynomial p : I — R of degree < m, its Chebyshev expansion is exact:
m
p(z) = Z eI (z) = cTTém(:r:), coefficients ¢ = Wp
=0

where p contains evaluations at Chebyshev points and W is the DCT (inverse) matrix.

1.
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“ Rank-adaptive construction in Chebyshev basis (Forward pass)

Key tool: 1D Chebyshev interpolation

For a polynomial p : I — R of degree < m, its Chebyshev expansion is exact:
m
p(z) = Z eI (z) = cTTém(:r:), coefficients ¢ = Wp
=0

where p contains evaluations at Chebyshev points and W is the DCT (inverse) matrix.

Let Iy == [0, wgz), S :L"g)], then we have :L’Z(f) + xl(-fj_—ll) +-- xl(-j) € Iy
1.
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“ Rank-adaptive construction in Chebyshev basis (Forward pass)

Key tool: 1D Chebyshev interpolation

For a polynomial p : I — R of degree < m, its Chebyshev expansion is exact:
m
p(z) = Z eI (z) = cTTém(:(:), coefficients ¢ = Wp
=0

where p contains evaluations at Chebyshev points and W is the DCT (inverse) matrix.

Let Iy == [0, wgz), S :L"g)], then we have :L’Z(f) + xl(-fj_—ll) +-- xl(-j) € Iy

1. Let c§heb € R1(m+1) be the Chebyshev coefficients of the function I 3 @ — p(:vl(-ll) + )

p(xgll) +x)= cfilebTéif (x) for x € I>9, i1 = 1,2,
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“ Rank-adaptive construction in Chebyshev basis (Forward pass)

Key tool: 1D Chebyshev interpolation

For a polynomial p: I — R of degree < m, its Chebyshev expansion is exact:
_ Z T\ = c¢TTL .~ _
=) cfT)(x)=c T, (z), coefficientsc=Wp

where p contains evaluations at Chebyshev points and W is the DCT (inverse) matrix.

Let Iy == [0, « ([) S ] then we have iL'( R —|—w( ) e I>g.

k41
1. Let c§heb € R1X(m+1) be the Chebyshev coefficients of the function I 3 x — p(a; (1 )+x)

plx;,” +z)= ¢hebTIZ2(x) for x € Is9, i1 = 1,2, and in particular
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@ Rank-adaptive construction in Chebyshev basis (Forward pass
>

Key tool: 1D Chebyshev interpolation

For a polynomial p: I — R of degree < m, its Chebyshev expansion is exact:
m
p(z) = Z T} (z) = cTTém(a;), coefficients ¢ = Wp
=0

where p contains evaluations at Chebyshev points and W is the DCT (inverse) matrix.
Let I>y := [Z?:k :cge), Zzl:k xgz)], then we have xg:) + :cgfjll) +-+ :cf;j) € I>y.
1. Let cﬁleb € R (1) be the Chebyshev coefficients of the function Isy 3  — p(a:z(»ll) +x):

plz;, +z)= cf?ebTéif (x) for x € I>9, i1 = 1,2, and in particular

Pir, iz, vid) = play,) + i, o al)) = TS ) 4+ ay))

The first QTT core can already be taken as Gq(i1) = cﬁleb e RIx(m+1)
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Rank-adaptive construction in Chebyshev basis (Forward pass)

1. For cheb € R*(m+1) being the Chebyshev coefficients of Isy > @+ p(asgll) + ), we have

ST (4)

. -\ _chebpl>2
P(Zla 12, 7ld> - cil TSm (ng iq
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Rank-adaptive construction in Chebyshev basis (Forward pass)

1. For cheb € R*(m+1) being the Chebyshev coefficients of Isy > @+ p(asgll) + ), we have

ST (4)

o . chebrl
P(Zb 12, 7ld> = cifl bTS?”n,Q (ng iq
2. We compute a LRA (e.g. SVD) of the Chebyshev coefficients:

C‘iheb T Ui T 27 (m41)xr
Ccheb ~ U1V1 = U172 Vl with Ul eR 1"/1 eR L
2 bl
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Rank-adaptive construction in Chebyshev basis (Forward pass)

1. For cheb € R1¥(m+1) being the Chebyshev coefficients of I>5 3 x — p(x(ll) + ), we have

i
o . I
Pin,iz, - ia) = ey T (2] + -+ i) (4)
2. We compute a LRA (e.g. SVD) of the Chebyshev coefficients:
cheb
[zéheb] ~U VT = [gﬂ ViT with Uy € R2X7, ;€ ROmHDxm,

)

3. Thus c;?f‘eb R~ U17i11/1T. Then Eq. (4) becomes
o . chebral I
P(it,in,+ yig) = €PPT2 (@D + o+ i) 2 UL ViTT22 (2 + -+ )
2 2 d
- Ulvilv(g’l?l (x’gz) + e + .'L',Ed))

where the polynomial vector vj(?) (y) on the interval I>5 is defined as

) ATl .
v () =[P (), 0P W) e R with v (y) = Vi, 5) T2 (y) for j =1,
The first QTT core can thus be taken as Gy (i1) = Uy ;.
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& Rank-adaptive construction in Chebyshev basis (Forward pass)

Q&A

3. We obtained from the previous step:

P(il,’ig, s ,’id) ~ U17i1’l)(§221 (1‘1(22) + -+ .’EE ))
4. For the 2nd QTT core, each I>3 5> z +— vj(-z)(xg) +x)forj=1,---,rpandipg=1,2is a
polynomial of degree < m = has < m + 1 non-zero Cheb. coeff. denoted by
CCheb(j, :) c RWH-I:

2,12
o8 @ 4+ all) = CSPTE D 4 2lD), (5)
We then compute a LRA of
cheb
C%hleb ~UpVy ! = V21 V" with Uy € R¥1X72 1y € ROmHDXr2 Thys
&%) Us,2
P(Zla 12,0 ,Zd) ~ Ul,zlcggngSan(xS) + -+ .CCEZ)) ~ Ul,il U2,i2Vv2TTS§n3 (:ES?) 4+ 4 .7355))

The second QTT core is therefore Ga(iz) = Us;,. Other cores are constructed similarly.
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Rank-adaptive construction (Error control)

m Backward pass: Perform right-to-left SVD sweep to further compress the ranks.

m SVD tolerances in forward and backward passes: s,(gf) and s,gb) fork=1,...,d—1.

m We have guaranteed element-wise error control.

Theorem [Benner, Khoromskij, S., in preparation, 2026]

For the QTT approximation of the polynomial p(x) constructed by the rank-adaptive method,
we have

d—1 d—1
P—P|<Vm+ 125,(;) —i—Ze,(fJ)rl
k=1

k=1
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Organization

3. Fully discrete format
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% Joint QTT approximation

m Consider f :[—1,1]®> — R approximated in ChebTuck format:
R R R
2 3
Flwr,2,73) & fon(@1,02,25) = 3 Y Z sV (21)0) (22)0l) (23),
i1=11iy=11is=1

with ’Ui(f)(l?g) = Z;’Z N V;(ZQZT,Z 1(xe), Tj,(z) = cos(jearccos(z)). Storage: O(DmR + RP).

m In ChebTuck, we have multiple polynomials vgf) (x¢) forig =1,..., R in each dimension /.
m Approximating each separately is inefficient.
= Joint QTT approximation:

m Treat polynomial index as an additional mode.
m First core G; becomes a 3D tensor (or last core).
m Subsequent cores are shared among all polynomials.
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Storage

2 2 2 2 2
) i /L Ti2 /L /Lri,d—l
O(dgr* x N) Nx @ () ()
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The fully discrete QT T-Tucker-like format

“!

m Combining ChebTuck

R R R
flar,aa,23) ~ > Y Z 1 inis Ul (21)05) (22)0))) (23),
i1=112=1143=1

with Joint QTT:

F (i1, 42, 3)

~ ,8 X1 U(l)(Zl) X9 U(Q) (7,2) X3 U(S) (23)

2 2 2 2

(A) R (B) R~ rio A\ T1,1 A\ A\ T1,d-1 <I>
—O—n I\ |\ |\ |\

2 2 2 2

F(@1, 2, 23) LO— - Joint QTT Discret. n = 27 Ry~ m0 A\ T2 A\ A\ a1 <|>

~ 2

bEn s Storage: O(D(r?logn +rR)) ~ \2/ \2/ k; >

R3 T30 A\ 73,1 A\ A\ 73,d—1 <I>
N N N N

LO_zs
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Organization

4. Numerical experiments
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Random polynomials in monomial basis

m Non-trivial, but practical and not pathological (not too oscillatory) polynomials.
m Polynomials of degree m with random coefficients:

p(z) = ap+ a1z + asz? + -+ ama™.

ay, follow the distribution aj ~ N (be=%, c - be=) for k = 1,...,300.

Decay parameters a ~ U(0,0.1) and b ~ U(0, 10).

Relative noise level ¢ = 0.1.

Discretization on uniform grid with n = 229 points (20 dimensional QTT tensor).
Tolerances of all SVDs in our method are set to 10712

dmrg_cross tolerance is set to 10712,
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Constructive Low Rank

dmrg_cross

Constructive (mono)

approx. error

Bonan

1074 \ \ T T

50 100 150 200 250 300

polynomial degree m

Figure: TTCross vs. Constructive (mono) vs. Constructive Low Rank.
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Constructive Low Rank

Constructive (mono)

dmrg_cross

8 I I R I I I
S o6 e !
£y .
a0
:
2 |
| | | | |
50 100 150 200 250 300

polynomial degree m

Figure: TTCross vs. Constructive (mono) vs. Constructive Low Rank.
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Random polynomials in monomial basis

dmrg_cross

1.5 i

Constructive (mono)

Constructive Low Rank

0.5

0 e ——————— O | |
50 100 150 200 250 300

polynomial degree m

runtime (1071 s)

Figure: TTCross vs. Constructive (mono) vs. Constructive Low Rank.
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)

Random polynomials in Chebyshev basis

N

Constructive Low Rank

108 T T T \ \

dmrg_cross

l~, approx. error

| | | |
50 100 150 200 250 300

polynomial degree m

Figure: TTCross vs. Constructive Low Rank.
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)

2% Random polynomials in Chebyshev basis

N

dmrg_cross Constructive Low Rank

12 | | T S R —
. e
= 8 B
. f
| | | | |
50 100 150 200 250 300

polynomial degree m

Figure: TTCross vs. Constructive Low Rank.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/


mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

)

2% Random polynomials in Chebyshev basis

¢

dmrg_cross Constructive Low Rank

4 \ \ \ \ \
\—cm 37
S
T2
E
e 1
. O | —————

50 100 150 200 250 300

polynomial degree m

Figure: TTCross vs. Constructive Low Rank.
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Storage

2 2 2 2 2
) é) i /L Ti2 /L /Lri,d—lé
O(dgr* x N) Nx @ () ()
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‘\ Test functions

We consider the following 3 test functions f : [-1,1]> — R:

1. Biomolecule potential fi: the multi-particle potential of the protein Fasciculin 1
comprising 1,228 atoms?.

2. Runge function fy: the classical 3-dimensional Runge function® given by

1
3. Wagon function f3: the SIAM 100-Dollar, 100-Digit Challenge function* defined by

fa(x,y, z) = 00 4 gin(60e?) sin(60z) 4 sin(70sin(z)) cos(10z)

7
+ sin(sin(80y)) — sin(10(x + 2)) + W "

2M.H. Le Du, P. Marchot, P.E. Bougis, and J.C. Fontecilla-Camps, J. Biol. Chem., 267:22122-30, 1992.
3*B. Hashemi and L. N. Trefethen, SIAM J. Sci. Comput., 39(5):C341-C363, 2017.

*Folkmar Bornemann, Dirk Laurie, Stan Wagon, and J6rg Waldvogel. SIAM, 2004.
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% The fully discrete QT T-Tucker-like format

m Combining ChebTuck
R R R : , ,
f(x1,m2,73) = Z Z Z ﬁz’l,zg,igvgl)(961)@1(2)(:62)1)@(3)(963),

where 0" (xg) =D v Tj,~1(x¢), Tj,(x) = cos(jearccos(z)) with Joint QTT:

(7 Je=1 " jesie

F(iy,ia,i3) ~ B x1 UD(i1) x5 UP (iy) x5 UG (i3).

2 2 2 2

(A) R (B) R~ o A\ 1,1 A\ A\ T1,d—1 <5
—CO—n I\ I\ I\ I\

2 2 2 2

f( ) R . Joint QTT Discret. n = 24 Ry~ o0 A\ T21 A\ A\ To.d-1 <|>

Ty, Lo, T3) A —O— 2 >

b Storage: O(D(r?logn + rR)) ~ k; k; k; 2

Rs Rs  —~ 130 A\ 73,1 A\ A\ T3,d—1 <I>
—O— s I\ I\ I\ I\
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% The fully discrete QT T-Tucker-like format

m Combining ChebTuck
R R R .
f(z1, 22, 23) Z Z Z Bi iz, is ¥ () z1)v ()(ﬂ?z) o )(373),

where vgf) (xe) =204 Y/}(&Tjé_l(xg), Tj,(x) = cos(jg arccos(x)) with Joint QTT:

F(i1,i2,13) ~ B x1 UM (i1) x5 U (ig) x3 UG (43).

Function Tucker ranks Polynomial degrees

S (32, 28, 32) (129, 129, 129)
f2 (17, 17, 17) (189, 189, 189)
f3 (4,3, 5) (662, 1052, 129)
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Joint QTT approximation of multiple polynomials

function  method configuration Lo error storage avg. rank 7  runtime (1071 s)

Constructive Low Rank Separate 2.93 x 10~10 63,394 7.03 4.1

f dmrg_cross Separate 1.92 x 10~ 11 96,414 8.68 29.4
! Constructive Low Rank  Joint 7.88 x 10711 17,198 19.66 0.2
dmrg_cross Joint 7.56 7,824 13.06 4.5
Constructive Low Rank Separate 2.92 x 10~10 39,594 7.48 3.2

f dmrg_cross Separate 1.17 x 1019 59,546 9.24 27.0
2 Constructive Low Rank  Joint 1.24 x 10710 4,240 9.76 0.2
dmrg_cross Joint 4.45 x 10~8 5,275 10.93 4.1
Constructive Low Rank Separate 2.54 x 10~8 10,076 7.93 3.9

f dmrg_cross Separate 7.05 x 1079 14,620 9.56 7.2
3 Constructive Low Rank  Joint 499 x 1072 3,820 9.53 0.9
dmrg_cross Joint 3.77 x 10~8 5,342 11.27 7.5

Table: ChebTuck factors from biomolecule f;, Runge fo, and wagon f3; n = 220,
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(A) (©)
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Figure: (A), (C), (E): Surfaces reconstructed from the fully discrete QT T-Tucker format for f;(x,y,0).
(B), (D), (F): Corresponding pointwise errors compared to the continuous tensors.

Bonan Sun, bsun@mpi-magdeburg.mpg.de, https://bonans.github.io/ 25/26


mailto:bsun@mpi-magdeburg.mpg.de
https://bonans.github.io/

% Conclusion

m A framework to bridge continuous (functional) and discrete (grid-based) tensor formats via
QTT.

Developed stable and rank-adaptive algorithms for joint QTT approximation of
polynomials.

m Numerical experiments demonstrate stability, efficiency, and storage savings.

Outlook: Extend it to general univariate functions and multivariate ridge functions and
more application scenarios.
m For more details and reference:

1. P. Benner, B. Khoromskij, B. Sun. Bridging continuous and discrete tensor representations of
multivariate functions using QTT, in preparation, 2026.

2. P. Benner, B. Khoromskij, V. Khoromskaia, B. Sun. A mesh-free hybrid Chebyshev-Tucker
tensor format with applications to multi-particle modelling, arXiv:2505.02319, 2025.

Thank you for your attention!
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